IDEAS home Printed from https://ideas.repec.org/f/pma1659.html
   My authors  Follow this author

Samir Mabrouk

Personal Details

First Name:Samir
Middle Name:
Last Name:Mabrouk
Suffix:
RePEc Short-ID:pma1659
[This author has chosen not to make the email address public]

Research output

as
Jump to: Articles

Articles

  1. Samir MABROUK, 2017. "Volatility Modelling and Parametric Value-At-Risk Forecast Accuracy: Evidence from Metal Products," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 7(1), pages 63-80, January.
  2. Mabrouk, Samir & Saadi, Samir, 2012. "Parametric Value-at-Risk analysis: Evidence from stock indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(3), pages 305-321.
  3. Samir Mabrouk & Chaker Aloui, 2011. "GARCH-class models estimations and value-at-risk analysis for exchange rate," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 4(3), pages 254-278.
  4. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
  5. Samir Mabrouk & Chaker Aloui, 2010. "One-day-ahead value-at-risk estimations with dual long-memory models: evidence from the Tunisian stock market," International Journal of Financial Services Management, Inderscience Enterprises Ltd, vol. 4(2), pages 77-94.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Mabrouk, Samir & Saadi, Samir, 2012. "Parametric Value-at-Risk analysis: Evidence from stock indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(3), pages 305-321.

    Cited by:

    1. Kurita, Takamitsu, 2014. "Dynamic characteristics of the daily yen–dollar exchange rate," Research in International Business and Finance, Elsevier, vol. 30(C), pages 72-82.
    2. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    3. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2015. "A comparison of Expected Shortfall estimation models," Journal of Economics and Business, Elsevier, vol. 78(C), pages 14-47.
    4. Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
    5. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2014. "Instabilities in the relationships and hedging strategies between crude oil and US stock markets: Do long memory and asymmetry matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 354-366.
    6. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    7. Manel Youssef & Lotfi Belkacem & Khaled Mokni, 2015. "Extreme Value Theory and long-memory-GARCH Framework: Application to Stock Market," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(8), pages 371-388, August.

  2. Samir Mabrouk & Chaker Aloui, 2011. "GARCH-class models estimations and value-at-risk analysis for exchange rate," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 4(3), pages 254-278.

    Cited by:

    1. Andrés Herrera Aramburú & Gabriel Rodríguez, 2016. "Volatility of stock market and exchange rate returns in Peru: Long memory or short memory with level shifts?," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 45-66.

  3. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.

    Cited by:

    1. Mohamed Chikhi & Anne Peguin-Feissolle & Michel Terraza, 2013. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Post-Print hal-01499630, HAL.
    2. Lyu, Yongjian & Wang, Peng & Wei, Yu & Ke, Rui, 2017. "Forecasting the VaR of crude oil market: Do alternative distributions help?," Energy Economics, Elsevier, vol. 66(C), pages 523-534.
    3. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    4. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    5. Aloui, Chaker & Hammoudeh, Shawkat & Hamida, Hela ben, 2015. "Global factors driving structural changes in the co-movement between sharia stocks and sukuk in the Gulf Cooperation Council countries," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 311-329.
    6. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
    7. Auer, Benjamin R., 2015. "Does the choice of performance measure influence the evaluation of commodity investments?," International Review of Financial Analysis, Elsevier, vol. 38(C), pages 142-150.
    8. Hammoudeh, Shawkat & Araújo Santos, Paulo & Al-Hassan, Abdullah, 2013. "Downside risk management and VaR-based optimal portfolios for precious metals, oil and stocks," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 318-334.
    9. Med Imen Gallali & Raggad Zahraa, 2012. "Evaluation of VaR models' forecasting performance: the case of oil markets," International Journal of Financial Services Management, Inderscience Enterprises Ltd, vol. 5(3), pages 197-215.
    10. Paraschiv, Florentina & Mudry, Pierre-Antoine & Andries, Alin Marius, 2015. "Stress-testing for portfolios of commodity futures," Economic Modelling, Elsevier, vol. 50(C), pages 9-18.
    11. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Non-linear volatility dynamics and risk management of precious metals," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 183-202.
    12. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
    13. Ghorbel, Ahmed & Trabelsi, Abdelwahed, 2014. "Energy portfolio risk management using time-varying extreme value copula methods," Economic Modelling, Elsevier, vol. 38(C), pages 470-485.
    14. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2012. "Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 738-757.
    15. Kang, Sang Hoon & Yoon, Seong-Min, 2013. "Modeling and forecasting the volatility of petroleum futures prices," Energy Economics, Elsevier, vol. 36(C), pages 354-362.
    16. Cochran, Steven J. & Mansur, Iqbal & Odusami, Babatunde, 2012. "Volatility persistence in metal returns: A FIGARCH approach," Journal of Economics and Business, Elsevier, vol. 64(4), pages 287-305.
    17. Zolotko, Mikhail & Okhrin, Ostap, 2014. "Modelling the general dependence between commodity forward curves," Energy Economics, Elsevier, vol. 43(C), pages 284-296.
    18. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    19. Jim Hanly, 2017. "Managing Energy Price Risk using Futures Contracts: A Comparative Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    20. Zhi-Fu Mi & Yi-Ming Wei & Bao-Jun Tang & Rong-Gang Cong & Hao Yu & Hong Cao & Dabo Guan, 2017. "Risk assessment of oil price from static and dynamic modelling approaches," Applied Economics, Taylor & Francis Journals, vol. 49(9), pages 929-939, February.
    21. Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
    22. Walid Chkili, 2015. "Gold–oil prices co-movements and portfolio diversification implications," Economics Bulletin, AccessEcon, vol. 35(4), pages 2832-2845.
    23. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    24. Delavari, Majid & Gandali Alikhani, Nadiya & Naderi, Esmaeil, 2013. "Does long memory matter in forecasting oil price volatility?," MPRA Paper 46356, University Library of Munich, Germany.
    25. Joëts, Marc, 2014. "Energy price transmissions during extreme movements," Economic Modelling, Elsevier, vol. 40(C), pages 392-399.
    26. Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
    27. Delavari, Majid & Gandali Alikhani, Nadiya, 2012. "The Effect of Crude Oil Price on the Methanol price," MPRA Paper 49727, University Library of Munich, Germany.
    28. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2015. "GARCH modeling of five popular commodities," Empirical Economics, Springer, vol. 48(4), pages 1691-1712, June.
    29. Lin, Boqiang & Wesseh, Presley K., 2013. "What causes price volatility and regime shifts in the natural gas market," Energy, Elsevier, vol. 55(C), pages 553-563.
    30. Youssef, Manel & Belkacem, Lotfi & Mokni, Khaled, 2015. "Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach," Energy Economics, Elsevier, vol. 51(C), pages 99-110.
    31. Walid Mensi & Shawkat Hammoude & Seong-Min Yoon, 2014. "Structural Breaks, Dynamic Correlations, Volatility Transmission, and Hedging Strategies for International Petroleum Prices and U.S. Dollar Exchange Rate," Working Papers 884, Economic Research Forum, revised Dec 2014.
    32. Chaker Aloui, 2015. "Volatility forecasting and risk management in some MENA stock markets: a nonlinear framework," Afro-Asian Journal of Finance and Accounting, Inderscience Enterprises Ltd, vol. 5(2), pages 160-192.
    33. Chkili, Walid, 2015. "Gold-oil prices co-movements and portfolio diversification implications," MPRA Paper 68110, University Library of Munich, Germany.
    34. Muhammad Irfan Malik & Abdul Rashid, 2017. "Return And Volatility Spillover Between Sectoral Stock And Oil Price: Evidence From Pakistan Stock Exchange," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 1-22, June.
    35. He, Kaijian & Lai, Kin Keung & Yen, Jerome, 2011. "Value-at-risk estimation of crude oil price using MCA based transient risk modeling approach," Energy Economics, Elsevier, vol. 33(5), pages 903-911, September.
    36. Marc Joëts, 2013. "Energy price transmissions during extreme movements," Working Papers 2013-28, Department of Research, Ipag Business School.
    37. Degenhardt, Thomas & Auer, Benjamin R., 2018. "The “Sell in May” effect: A review and new empirical evidence," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 169-205.
    38. Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2013. "Long memory and asymmetry in the volatility of commodity markets and Basel Accord: choosing between models," Working Papers 2013-9, Department of Research, Ipag Business School.
    39. Gatfaoui, Hayette, 2015. "Pricing the (European) option to switch between two energy sources: An application to crude oil and natural gas," Energy Policy, Elsevier, vol. 87(C), pages 270-283.
    40. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2014. "Instabilities in the relationships and hedging strategies between crude oil and US stock markets: Do long memory and asymmetry matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 354-366.
    41. Kostas Andriosopoulos & Nikos Nomikos, 2012. "Risk management in the energy markets and Value-at-Risk modelling: a Hybrid approach," RSCAS Working Papers 2012/47, European University Institute.
    42. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.
    43. Lin, Boqiang & Wesseh, Presley K. & Appiah, Michael Owusu, 2014. "Oil price fluctuation, volatility spillover and the Ghanaian equity market: Implication for portfolio management and hedging effectiveness," Energy Economics, Elsevier, vol. 42(C), pages 172-182.
    44. Klein, Tony & Walther, Thomas, 2016. "Oil price volatility forecast with mixture memory GARCH," Energy Economics, Elsevier, vol. 58(C), pages 46-58.
    45. Hou, Aijun & Suardi, Sandy, 2012. "A nonparametric GARCH model of crude oil price return volatility," Energy Economics, Elsevier, vol. 34(2), pages 618-626.

  4. Samir Mabrouk & Chaker Aloui, 2010. "One-day-ahead value-at-risk estimations with dual long-memory models: evidence from the Tunisian stock market," International Journal of Financial Services Management, Inderscience Enterprises Ltd, vol. 4(2), pages 77-94.

    Cited by:

    1. Samir MABROUK, 2017. "Volatility Modelling and Parametric Value-At-Risk Forecast Accuracy: Evidence from Metal Products," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 7(1), pages 63-80, January.
    2. Chaker Aloui & Hela BEN HAMIDA, 2015. "Estimation and Performance Assessment of Value-at-Risk and Expected Shortfall Based on Long-Memory GARCH-Class Models," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 30-54, January.
    3. Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
    4. Chaker Aloui, 2015. "Volatility forecasting and risk management in some MENA stock markets: a nonlinear framework," Afro-Asian Journal of Finance and Accounting, Inderscience Enterprises Ltd, vol. 5(2), pages 160-192.
    5. Mabrouk, Samir & Saadi, Samir, 2012. "Parametric Value-at-Risk analysis: Evidence from stock indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(3), pages 305-321.
    6. Dilip Kumar, 2016. "Estimating and forecasting value-at-risk using the unbiased extreme value volatility estimator," Proceedings of Economics and Finance Conferences 3205528, International Institute of Social and Economic Sciences.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Samir Mabrouk should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.