IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej38-3-hanly.html
   My bibliography  Save this article

Managing Energy Price Risk using Futures Contracts: A Comparative Analysis

Author

Listed:
  • Jim Hanly

Abstract

This paper carries out a comparative analysis of managing energy risk through futures hedging, for energy market participants across a broad dataset that encompasses the largest and most actively traded energy products. Uniquely, we carry out a hedge comparison using a variety of risk measures including Variance, Value at risk (VaR), and Expected Shortfall as well as a utility based performance metric for two different investor horizons; weekly and monthly. We find that hedging is effective across the spectrum of risk measures we employ. We also find significant differences in both the hedging strategies and the hedging effectiveness of different energy assets. Better performance is found for West Texas Intermediate Oil and Heating Oil while the poorest performer in hedging terms is Natural Gas.

Suggested Citation

  • Jim Hanly, 2017. "Managing Energy Price Risk using Futures Contracts: A Comparative Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
  • Handle: RePEc:aen:journl:ej38-3-hanly
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2928
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    2. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    3. John Cotter & Jim Hanly, 2006. "Reevaluating hedging performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(7), pages 677-702, July.
    4. Ronald D. Ripple & Imad A. Moosa, 2007. "Hedging effectiveness and futures contract maturity: the case of NYMEX crude oil futures," Applied Financial Economics, Taylor & Francis Journals, vol. 17(9), pages 683-689.
    5. Bolinger, Mark & Wiser, Ryan & Golove, William, 2006. "Accounting for fuel price risk when comparing renewable to gas-fired generation: the role of forward natural gas prices," Energy Policy, Elsevier, vol. 34(6), pages 706-720, April.
    6. Cifarelli, Giulio & Paladino, Giovanna, 2010. "Oil price dynamics and speculation: A multivariate financial approach," Energy Economics, Elsevier, vol. 32(2), pages 363-372, March.
    7. Hui Guo & Robert F. Whitelaw, 2006. "Uncovering the Risk–Return Relation in the Stock Market," Journal of Finance, American Finance Association, vol. 61(3), pages 1433-1463, June.
    8. Ted Juhl & Ira G. Kawaller & Paul D. Koch, 2012. "The Effect of the Hedge Horizon on Optimal Hedge Size and Effectiveness When Prices are Cointegrated," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(9), pages 837-876, September.
    9. Emile J. Brinkmann & Ramon Rabinovitch, 1995. "Regional Limitations on the Hedging Effectiveness of Natural Gas Futures," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 113-124.
    10. Peter R. Locke & P. C. Venkatesh, 1997. "Futures market transaction costs," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(2), pages 229-245, April.
    11. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    12. Cotter, John & Hanly, Jim, 2012. "A utility based approach to energy hedging," Energy Economics, Elsevier, vol. 34(3), pages 817-827.
    13. Marzo, Massimiliano & Zagaglia, Paolo, 2008. "A note on the conditional correlation between energy prices: Evidence from future markets," Energy Economics, Elsevier, vol. 30(5), pages 2454-2458, September.
    14. Richard D. F. Harris & Jian Shen, 2006. "Hedging and value at risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(4), pages 369-390, April.
    15. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    16. Chris Brooks & Alešs Černý & Joëlle Miffre, 2012. "Optimal hedging with higher moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(10), pages 909-944, October.
    17. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    18. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
    19. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    20. Stephen P. A. Brown & Mine K. Yucel, 2008. "What Drives Natural Gas Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 45-60.
    21. Lorne N. Switzer & Mario El‐Khoury, 2007. "Extreme volatility, speculative efficiency, and the hedging effectiveness of the oil futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(1), pages 61-84, January.
    22. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    23. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    24. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    25. Robert J. Myers, 1991. "Estimating time‐varying optimal hedge ratios on futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(1), pages 39-53, February.
    26. Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management," Energy Economics, Elsevier, vol. 42(C), pages 332-342.
    27. Lien, Donald & Yang, Li, 2008. "Asymmetric effect of basis on dynamic futures hedging: Empirical evidence from commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 187-198, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panos K. Pouliasis & Ilias D. Visvikis & Nikos C. Papapostolou & Alexander A. Kryukov, 2020. "A novel risk management framework for natural gas markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 430-459, March.
    2. Daniel Velásquez-Gaviria & Andrés Mora-Valencia & Javier Perote, 2020. "A Comparison of the Risk Quantification in Traditional and Renewable Energy Markets," Energies, MDPI, Open Access Journal, vol. 13(11), pages 1-42, June.
    3. Barbi, Massimiliano & Romagnoli, Silvia, 2018. "Skewness, basis risk, and optimal futures demand," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 14-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cotter, John & Hanly, Jim, 2015. "Performance of utility based hedges," Energy Economics, Elsevier, vol. 49(C), pages 718-726.
    2. Martínez, Beatriz & Torró, Hipòlit, 2018. "Hedging spark spread risk with futures," Energy Policy, Elsevier, vol. 113(C), pages 731-746.
    3. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    4. Chai, Shanglei & Zhou, P., 2018. "The Minimum-CVaR strategy with semi-parametric estimation in carbon market hedging problems," Energy Economics, Elsevier, vol. 76(C), pages 64-75.
    5. Yang (Greg) Hou & Mark Holmes, 2020. "Do higher order moments of return distribution provide better decisions in minimum-variance hedging? Evidence from US stock index futures," Australian Journal of Management, Australian School of Business, vol. 45(2), pages 240-265, May.
    6. Hou, Yang & Holmes, Mark, 2017. "On the effects of static and autoregressive conditional higher order moments on dynamic optimal hedging," MPRA Paper 82000, University Library of Munich, Germany.
    7. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    8. Ghoddusi, Hamed & Emamzadehfard, Sahar, 2017. "Optimal hedging in the US natural gas market: The effect of maturity and cointegration," Energy Economics, Elsevier, vol. 63(C), pages 92-105.
    9. Dinica, Mihai Cristian & Armeanu, Daniel, 2014. "The Optimal Hedging Ratio for Non-Ferrous Metals," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 105-122, March.
    10. Park, Jin Suk & Shi, Yukun, 2017. "Hedging and speculative pressures and the transition of the spot-futures relationship in energy and metal markets," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 176-191.
    11. Shrestha, Keshab & Subramaniam, Ravichandran & Rassiah, Puspavathy, 2017. "Pure martingale and joint normality tests for energy futures contracts," Energy Economics, Elsevier, vol. 63(C), pages 174-184.
    12. Caporin, Massimiliano & Jimenez-Martin, Juan-Angel & Gonzalez-Serrano, Lydia, 2014. "Currency hedging strategies in strategic benchmarks and the global and Euro sovereign financial crises," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 31(C), pages 159-177.
    13. Jitmaneeroj, Boonlert, 2018. "The effect of the rebalancing horizon on the tradeoff between hedging effectiveness and transaction costs," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 282-298.
    14. Shrestha, Keshab & Subramaniam, Ravichandran & Peranginangin, Yessy & Philip, Sheena Sara Suresh, 2018. "Quantile hedge ratio for energy markets," Energy Economics, Elsevier, vol. 71(C), pages 253-272.
    15. Arunanondchai, Panit & Sukcharoen, Kunlapath & Leatham, David J., 2020. "Dealing with tail risk in energy commodity markets: Futures contracts versus exchange-traded funds," Journal of Commodity Markets, Elsevier, vol. 20(C).
    16. Roar Adland & Haakon Ameln & Eirik A. Børnes, 2020. "Hedging ship price risk using freight derivatives in the drybulk market," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-18, December.
    17. Kuang-Liang Chang, 2011. "The optimal value-at-risk hedging strategy under bivariate regime switching ARCH framework," Applied Economics, Taylor & Francis Journals, vol. 43(21), pages 2627-2640.
    18. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    19. Li, Ming-Yuan Leon, 2009. "Could the jump diffusion technique enhance the effectiveness of futures hedging models?," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3076-3088.
    20. Wenming Shi & Kevin X. Li & Zhongzhi Yang & Ganggang Wang, 2017. "Time-varying copula models in the shipping derivatives market," Empirical Economics, Springer, vol. 53(3), pages 1039-1058, November.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej38-3-hanly. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Williams). General contact details of provider: http://edirc.repec.org/data/iaeeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.