IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2014i1p105-122.html
   My bibliography  Save this article

The Optimal Hedging Ratio for Non-Ferrous Metals

Author

Listed:
  • Dinica, Mihai Cristian

    (Academy of Economic Studies, Bucharest, Romania)

  • Armeanu, Daniel

    () (Academy of Economic Studies, Bucharest, Romania)

Abstract

The increased volatility that characterized the markets during the last years emphasized the need for hedging. Given their industrial usage, the non-ferrous metals have a great importance for the economic activity. The volatility and unpredictability of metals prices create risks for an important number of companies and for the economy. The existence of basis risk leads to the need for the optimal hedge ratio estimation. Our paper estimates the optimal hedging ratio in the case of the non-ferrous metals traded on the London Metals Exchange using three methods: the ordinary least squares regression, the error-correction model, and the auto regressive distributed lag model. It also provides an in-sample and an out-of-sample comparison between these three models. The results show that the optimal hedge ratio and hedging effectiveness increase with the hedging horizon, converging to 1 for long tenors. Our findings also show that the more complex models provide a greater in-sample hedging effectiveness, but for the out-of-sample analysis the increase in performance is not significant.

Suggested Citation

  • Dinica, Mihai Cristian & Armeanu, Daniel, 2014. "The Optimal Hedging Ratio for Non-Ferrous Metals," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 105-122, March.
  • Handle: RePEc:rjr:romjef:v::y:2014:i:1:p:105-122
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/rjef/rjef1_14/rjef1_2014p105-122.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Donald Lien & Yiu Kuen Tse, 2000. "Hedging downside risk with futures contracts," Applied Financial Economics, Taylor & Francis Journals, vol. 10(2), pages 163-170.
    2. John Cotter & Jim Hanly, 2006. "Reevaluating hedging performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(7), pages 677-702, July.
    3. Scutaru, Cornelia, 2011. "Possible Evolutions of Investment Rate – Error Correction Models Scenarios," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 141-162, December.
    4. Ted Juhl & Ira G. Kawaller & Paul D. Koch, 2012. "The Effect of the Hedge Horizon on Optimal Hedge Size and Effectiveness When Prices are Cointegrated," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(9), pages 837-876, September.
    5. Pesaran, M Hashem, 1997. "The Role of Economic Theory in Modelling the Long Run," Economic Journal, Royal Economic Society, vol. 107(440), pages 178-191, January.
    6. Cecchetti, Stephen G & Cumby, Robert E & Figlewski, Stephen, 1988. "Estimation of the Optimal Futures Hedge," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 623-630, November.
    7. Christos Floros & Dimitrios Vougas, 2004. "Hedge ratios in Greek stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 14(15), pages 1125-1136.
    8. Michaël Dewally & Luke Marriott, 2008. "Effective Basemetal Hedging: The Optimal Hedge Ratio and Hedging Horizon," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 1(1), pages 1-36, December.
    9. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    10. Hsiang-Tai Lee & Jonathan Yoder, 2007. "A bivariate Markov regime switching GARCH approach to estimate time varying minimum variance hedge ratios," Applied Economics, Taylor & Francis Journals, vol. 39(10), pages 1253-1265.
    11. Cotter, John & Hanly, Jim, 2012. "A utility based approach to energy hedging," Energy Economics, Elsevier, vol. 34(3), pages 817-827.
    12. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    13. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    14. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    15. Cheng Hsiao, 1997. "Cointegration and Dynamic Simultaneous Equations Model," Econometrica, Econometric Society, vol. 65(3), pages 647-670, May.
    16. Ghosh, Asim, 1995. "The Hedging Effectiveness of ECU Futures Contracts: Forecasting Evidence from an Error Correction Model," The Financial Review, Eastern Finance Association, vol. 30(3), pages 567-581, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rozaimah Zainudin & Roselee Shah Shaharudin, 2011. "Multi Mean Garch Approach to Evaluating Hedging Performance in the Crude Palm Oil Futures Market," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 7(1), pages 111-130.
    2. John Cotter & Jim Hanly, 2012. "Hedging effectiveness under conditions of asymmetry," The European Journal of Finance, Taylor & Francis Journals, vol. 18(2), pages 135-147, February.
    3. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.
    4. Alexander, Carol & Prokopczuk, Marcel & Sumawong, Anannit, 2013. "The (de)merits of minimum-variance hedging: Application to the crack spread," Energy Economics, Elsevier, vol. 36(C), pages 698-707.
    5. Jim Hanly, 2017. "Managing Energy Price Risk using Futures Contracts: A Comparative Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    6. Degiannakis, Stavros & Floros, Christos & Salvador, Enrique & Vougas, Dimitrios, 2020. "On the Stationarity of Futures Hedge Ratios," MPRA Paper 102907, University Library of Munich, Germany.
    7. Cifarelli, Giulio & Paladino, Giovanna, 2011. "Hedging vs. speculative pressures on commodity futures returns," MPRA Paper 28229, University Library of Munich, Germany.
    8. Cotter, John & Hanly, Jim, 2015. "Performance of utility based hedges," Energy Economics, Elsevier, vol. 49(C), pages 718-726.
    9. Chen, Sheng-Syan & Lee, Cheng-few & Shrestha, Keshab, 2003. "Futures hedge ratios: a review," The Quarterly Review of Economics and Finance, Elsevier, vol. 43(3), pages 433-465.
    10. Caporin, Massimiliano, 2013. "Equity and CDS sector indices: Dynamic models and risk hedging," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 261-275.
    11. Qu, Hui & Wang, Tianyang & Zhang, Yi & Sun, Pengfei, 2019. "Dynamic hedging using the realized minimum-variance hedge ratio approach – Examination of the CSI 300 index futures," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    12. Cifarelli, Giulio & Paladino, Giovanna, 2015. "A dynamic model of hedging and speculation in the commodity futures markets," Journal of Financial Markets, Elsevier, vol. 25(C), pages 1-15.
    13. Vicente Meneu & Hipòlit Torró, 2003. "Asymmetric covariance in spot‐futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(11), pages 1019-1046, November.
    14. Zhipeng, Yan & Shenghong, Li, 2018. "Hedge ratio on Markov regime-switching diagonal Bekk–Garch model," Finance Research Letters, Elsevier, vol. 24(C), pages 49-55.
    15. Choudhry, Taufiq, 2009. "Short-run deviations and time-varying hedge ratios: Evidence from agricultural futures markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 58-65, March.
    16. Bessler, Wolfgang & Leonhardt, Alexander & Wolff, Dominik, 2016. "Analyzing hedging strategies for fixed income portfolios: A Bayesian approach for model selection," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 239-256.
    17. Shrestha, Keshab & Subramaniam, Ravichandran & Rassiah, Puspavathy, 2017. "Pure martingale and joint normality tests for energy futures contracts," Energy Economics, Elsevier, vol. 63(C), pages 174-184.
    18. Jonathan Dark, 2005. "A Critique of Minimum Variance Hedging," Accounting Research Journal, Emerald Group Publishing, vol. 18(1), pages 40-49, June.
    19. Alizadeh, Amir H. & Huang, Chih-Yueh & van Dellen, Stefan, 2015. "A regime switching approach for hedging tanker shipping freight rates," Energy Economics, Elsevier, vol. 49(C), pages 44-59.
    20. Jahangir Sultan & Mohammad Hasan, 2008. "The effectiveness of dynamic hedging: evidence from selected European stock index futures," The European Journal of Finance, Taylor & Francis Journals, vol. 14(6), pages 469-488.

    More about this item

    Keywords

    hedging; optimal hedging ratio; risk management; OLS; error-correction model;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2014:i:1:p:105-122. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Corina Saman). General contact details of provider: http://edirc.repec.org/data/ipacaro.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.