IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v144y2025ics0140988325001537.html
   My bibliography  Save this article

Is there a robust hedging method during the COVID-19 pandemic? Evidence from Chinese crude oil futures

Author

Listed:
  • Geng, Qianjie

Abstract

This paper focuses on finding an excellent and robust hedging method during the COVID-19 pandemic. We develop a novel hedging framework based on the conventional approach for the Chinese oil futures market. Commonly used hedging models are employed to compare hedging performance under these methodological frameworks. Our results show that the proposed shrinking hedging framework demonstrates the highest hedging effectiveness among all the competitors, especially during the COVID-19 pandemic. The main findings also stand up to several robustness tests. Moreover, the empirical results reveal that the superior performance of our shrinking method can be attributed to the high estimation error of minimum-variance hedging strategies.

Suggested Citation

  • Geng, Qianjie, 2025. "Is there a robust hedging method during the COVID-19 pandemic? Evidence from Chinese crude oil futures," Energy Economics, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:eneeco:v:144:y:2025:i:c:s0140988325001537
    DOI: 10.1016/j.eneco.2025.108329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988325001537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2025.108329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    3. Kuang, Wei, 2023. "The equity-oil hedge: A comparison between volatility and alternative risk frameworks," Energy, Elsevier, vol. 271(C).
    4. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    5. Lv, Fei & Yang, Chen & Fang, Libing, 2020. "Do the crude oil futures of the Shanghai International Energy Exchange improve asset allocation of Chinese petrochemical-related stocks?," International Review of Financial Analysis, Elsevier, vol. 71(C).
    6. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    7. Sharma, Udayan & Karmakar, Madhusudan, 2023. "Measuring minimum variance hedging effectiveness: Traditional vs. sophisticated models," International Review of Financial Analysis, Elsevier, vol. 87(C).
    8. Yan, Xiang & Bai, Jiancheng & Li, Xiafei & Chen, Zhonglu, 2022. "Can dimensional reduction technology make better use of the information of uncertainty indices when predicting volatility of Chinese crude oil futures?," Resources Policy, Elsevier, vol. 75(C).
    9. Garbade, Kenneth D & Silber, William L, 1983. "Price Movements and Price Discovery in Futures and Cash Markets," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 289-297, May.
    10. John Elder & Apostolos Serletis, 2010. "Oil Price Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1137-1159, September.
    11. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    12. Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
    13. Yu, Xing & Li, Yanyan & Lu, Junli & Shen, Xilin, 2023. "Futures hedging in crude oil markets: A trade-off between risk and return," Resources Policy, Elsevier, vol. 80(C).
    14. Alexander, Carol & Prokopczuk, Marcel & Sumawong, Anannit, 2013. "The (de)merits of minimum-variance hedging: Application to the crack spread," Energy Economics, Elsevier, vol. 36(C), pages 698-707.
    15. Wang, Yudong & Geng, Qianjie & Meng, Fanyi, 2019. "Futures hedging in crude oil markets: A comparison between minimum-variance and minimum-risk frameworks," Energy, Elsevier, vol. 181(C), pages 815-826.
    16. Basher, Syed Abul & Sadorsky, Perry, 2016. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," Energy Economics, Elsevier, vol. 54(C), pages 235-247.
    17. Baum, Christopher F. & Zerilli, Paola, 2016. "Jumps and stochastic volatility in crude oil futures prices using conditional moments of integrated volatility," Energy Economics, Elsevier, vol. 53(C), pages 175-181.
    18. Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
    19. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    20. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    21. Don Bredin & John Elder & Stilianos Fountas, 2010. "The Effects of Uncertainty about Oil Prices in G-7," Working Papers 200840, Geary Institute, University College Dublin.
    22. Andrew F. Siegel & Artemiza Woodgate, 2007. "Performance of Portfolios Optimized with Estimation Error," Management Science, INFORMS, vol. 53(6), pages 1005-1015, June.
    23. Pan, Zhiyuan & Xiao, Dongli & Dong, Qingma & Liu, Li, 2022. "Structural breaks, macroeconomic fundamentals and cross hedge ratio," Finance Research Letters, Elsevier, vol. 47(PA).
    24. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    25. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    26. Sun, Chuanwang & Min, Jialin & Sun, Jiacheng & Gong, Xu, 2023. "The role of China's crude oil futures in world oil futures market and China's financial market," Energy Economics, Elsevier, vol. 120(C).
    27. Cotter, John & Hanly, Jim, 2015. "Performance of utility based hedges," Energy Economics, Elsevier, vol. 49(C), pages 718-726.
    28. Robert J. Myers & Stanley R. Thompson, 1989. "Generalized Optimal Hedge Ratio Estimation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(4), pages 858-868.
    29. LI, Jie & HUANG, Lixin & LI, Ping, 2021. "Are Chinese crude oil futures good hedging tools?," Finance Research Letters, Elsevier, vol. 38(C).
    30. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    31. Lin, Boqiang & Wesseh, Presley K. & Appiah, Michael Owusu, 2014. "Oil price fluctuation, volatility spillover and the Ghanaian equity market: Implication for portfolio management and hedging effectiveness," Energy Economics, Elsevier, vol. 42(C), pages 172-182.
    32. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    33. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    34. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    35. Hou, Keqiang & Mountain, Dean C. & Wu, Ting, 2016. "Oil price shocks and their transmission mechanism in an oil-exporting economy: A VAR analysis informed by a DSGE model," Journal of International Money and Finance, Elsevier, vol. 68(C), pages 21-49.
    36. Zhu, Pengfei & Lu, Tuantuan & Chen, Shenglan, 2022. "How do crude oil futures hedge crude oil spot risk after the COVID-19 outbreak? A wavelet denoising-GARCHSK-SJC Copula hedge ratio estimation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    37. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    38. Xu, Qinhua & Fu, Buben & Wang, Bin, 2022. "The effects of oil price uncertainty on China’s economy," Energy Economics, Elsevier, vol. 107(C).
    39. Petropoulos, Fotios & Hyndman, Rob J. & Bergmeir, Christoph, 2018. "Exploring the sources of uncertainty: Why does bagging for time series forecasting work?," European Journal of Operational Research, Elsevier, vol. 268(2), pages 545-554.
    40. Shrestha, Keshab & Subramaniam, Ravichandran & Peranginangin, Yessy & Philip, Sheena Sara Suresh, 2018. "Quantile hedge ratio for energy markets," Energy Economics, Elsevier, vol. 71(C), pages 253-272.
    41. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    42. Sukcharoen, Kunlapath & Leatham, David J., 2017. "Hedging downside risk of oil refineries: A vine copula approach," Energy Economics, Elsevier, vol. 66(C), pages 493-507.
    43. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yudong & Geng, Qianjie & Meng, Fanyi, 2019. "Futures hedging in crude oil markets: A comparison between minimum-variance and minimum-risk frameworks," Energy, Elsevier, vol. 181(C), pages 815-826.
    2. Cao, Min & Conlon, Thomas, 2023. "Composite jet fuel cross-hedging," Journal of Commodity Markets, Elsevier, vol. 30(C).
    3. Sharma, Udayan & Karmakar, Madhusudan, 2023. "Measuring minimum variance hedging effectiveness: Traditional vs. sophisticated models," International Review of Financial Analysis, Elsevier, vol. 87(C).
    4. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    5. Kuang, Wei, 2022. "The economic value of high-frequency data in equity-oil hedge," Energy, Elsevier, vol. 239(PA).
    6. Martínez, Beatriz & Torró, Hipòlit, 2018. "Hedging spark spread risk with futures," Energy Policy, Elsevier, vol. 113(C), pages 731-746.
    7. Cui, Yan & Feng, Yun, 2020. "Composite hedge and utility maximization for optimal futures hedging," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 15-32.
    8. Chen, Xiangyu & Tongurai, Jittima, 2021. "Cross-commodity hedging for illiquid futures: Evidence from China's base metal futures market," Global Finance Journal, Elsevier, vol. 49(C).
    9. Čech, František & Zítek, Michal, 2022. "Marine fuel hedging under the sulfur cap regulations," Energy Economics, Elsevier, vol. 113(C).
    10. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
    11. Qianjie Geng & Yudong Wang, 2021. "Futures Hedging in CSI 300 Markets: A Comparison Between Minimum-Variance and Maximum-Utility Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 719-742, February.
    12. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    13. Olson, Eric & Vivian, Andrew & Wohar, Mark E., 2019. "What is a better cross-hedge for energy: Equities or other commodities?," Global Finance Journal, Elsevier, vol. 42(C).
    14. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.
    15. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    16. Sarwar, Suleman & Khalfaoui, Rabeh & Waheed, Rida & Dastgerdi, Hamidreza Ghorbani, 2019. "Volatility spillovers and hedging: Evidence from Asian oil-importing countries," Resources Policy, Elsevier, vol. 61(C), pages 479-488.
    17. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    18. Ali, Sajid & Raza, Naveed & Vinh Vo, Xuan & Le, Van, 2022. "Modelling the joint dynamics of financial assets using MGARCH family models: Insights into hedging and diversification strategies," Resources Policy, Elsevier, vol. 78(C).
    19. Kuang, Wei, 2023. "The equity-oil hedge: A comparison between volatility and alternative risk frameworks," Energy, Elsevier, vol. 271(C).
    20. Yan Hu & Jian Ni, 2024. "A deep learning‐based financial hedging approach for the effective management of commodity risks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 879-900, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:144:y:2025:i:c:s0140988325001537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.