IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v38y2021ics1544612320300350.html
   My bibliography  Save this article

Are Chinese crude oil futures good hedging tools?

Author

Listed:
  • LI, Jie
  • HUANG, Lixin
  • LI, Ping

Abstract

Chinese crude oil futures market was launched on March 26, 2018 and became the third largest international crude oil futures market. To check the performance of this new comer, we investigate dynamic correlations between Chinese crude oil futures and spot prices of its two main underlying assets, OPEC and Oman, as well as the hedging effectiveness, accommodating WTI and Brent crude oil futures for comparison. Empirical results show that the correlations and hedging effectiveness of Chinese crude oil futures and spots are quite strong, showing that Chinese crude oil futures market realized its main functions and launching aims.

Suggested Citation

  • LI, Jie & HUANG, Lixin & LI, Ping, 2021. "Are Chinese crude oil futures good hedging tools?," Finance Research Letters, Elsevier, vol. 38(C).
  • Handle: RePEc:eee:finlet:v:38:y:2021:i:c:s1544612320300350
    DOI: 10.1016/j.frl.2020.101514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612320300350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2020.101514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Weide, R. van der, 2002. "Generalized Orthogonal GARCH. A Multivariate GARCH model," CeNDEF Working Papers 02-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    3. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
    4. Bekiros, Stelios D. & Diks, Cees G.H., 2008. "The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality," Energy Economics, Elsevier, vol. 30(5), pages 2673-2685, September.
    5. Hing Lin Chan & Kai-Yin Woo, 2016. "An investigation into the dynamic relationship between international and China’s crude oil prices," Applied Economics, Taylor & Francis Journals, vol. 48(24), pages 2215-2224, May.
    6. He, Yongxiu & Wang, Bing & Wang, Jianhui & Xiong, Wei & Xia, Tian, 2013. "Correlation between Chinese and international energy prices based on a HP filter and time difference analysis," Energy Policy, Elsevier, vol. 62(C), pages 898-909.
    7. Thomas V. Schwarz & Andrew C. Szakmary, 1994. "Price discovery in petroleum markets: Arbitrage, cointegration, and the time interval of analysis," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 14(2), pages 147-167, April.
    8. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    9. Changming Song & Chongguang Li, 2015. "Relationship between Chinese and International Crude Oil Prices: A VEC-TARCH Approach," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, November.
    10. Lee, Chien-Chiang & Zeng, Jhih-Hong, 2011. "Revisiting the relationship between spot and futures oil prices: Evidence from quantile cointegrating regression," Energy Economics, Elsevier, vol. 33(5), pages 924-935, September.
    11. Param Silvapulle & Imad A. Moosa, 1999. "The relationship between spot and futures prices: Evidence from the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(2), pages 175-193, April.
    12. Basher, Syed Abul & Sadorsky, Perry, 2016. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," Energy Economics, Elsevier, vol. 54(C), pages 235-247.
    13. Huang, Bwo-Nung & Yang, C.W. & Hwang, M.J., 2009. "The dynamics of a nonlinear relationship between crude oil spot and futures prices: A multivariate threshold regression approach," Energy Economics, Elsevier, vol. 31(1), pages 91-98, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    2. Sebastian Nick, 2016. "The Informational Efficiency of European Natural Gas Hubs: Price Formation and Intertemporal Arbitrage," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Kuang, Wei, 2023. "The equity-oil hedge: A comparison between volatility and alternative risk frameworks," Energy, Elsevier, vol. 271(C).
    4. Xianfang Su & Huiming Zhu & Xinxia Yang, 2019. "Heterogeneous Causal Relationships between Spot and Futures Oil Prices: Evidence from Quantile Causality Analysis," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    5. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    6. Xu Xiaojie, 2018. "Linear and Nonlinear Causality between Corn Cash and Futures Prices," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 16(2), pages 1-16, November.
    7. Jena, Sangram Keshari & Tiwari, Aviral Kumar & Hammoudeh, Shawkat & Roubaud, David, 2019. "Distributional predictability between commodity spot and futures: Evidence from nonparametric causality-in-quantiles tests," Energy Economics, Elsevier, vol. 78(C), pages 615-628.
    8. Xiaojie Xu, 2018. "Cointegration and price discovery in US corn cash and futures markets," Empirical Economics, Springer, vol. 55(4), pages 1889-1923, December.
    9. Salman Sarwat & Muhammad Kashif & Muhammad Aqil & Farhan Ahmed, 2019. "Determination of Causality in Prices of Crude Oil," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 298-304.
    10. Nikolaos A. Kyriazis, 2020. "Is Bitcoin Similar to Gold? An Integrated Overview of Empirical Findings," JRFM, MDPI, vol. 13(5), pages 1-19, May.
    11. Shao, Ying-Hui & Yang, Yan-Hong & Shao, Hao-Lin & Stanley, H. Eugene, 2019. "Time-varying lead–lag structure between the crude oil spot and futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 723-733.
    12. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    13. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    14. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CARF F-Series CARF-F-168, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    16. Pal, Debdatta & Mitra, Subrata K., 2019. "Hedging bitcoin with other financial assets," Finance Research Letters, Elsevier, vol. 30(C), pages 30-36.
    17. Manuel A. Hernandez & Raul Ibarra & Danilo R. Trupkin, 2014. "How far do shocks move across borders? Examining volatility transmission in major agricultural futures markets," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(2), pages 301-325.
    18. Jin, Jiayu & Han, Liyan & Wu, Lei & Zeng, Hongchao, 2020. "The hedging effectiveness of global sectors in emerging and developed stock markets," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 92-117.
    19. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    20. Magkonis, Georgios & Tsouknidis, Dimitris A., 2017. "Dynamic spillover effects across petroleum spot and futures volatilities, trading volume and open interest," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 104-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:38:y:2021:i:c:s1544612320300350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.