IDEAS home Printed from https://ideas.repec.org/e/psk39.html
   My authors  Follow this author

Pawel Skrzypczynski
(Paweł Skrzypczyński)

Personal Details

First Name:Pawel
Middle Name:
Last Name:Skrzypczynski
Suffix:
RePEc Short-ID:psk39
[This author has chosen not to make the email address public]
http://sites.google.com/site/pskrzypczynski/

Affiliation

Narodowy Bank Polski

Warszawa, Poland
http://www.nbp.pl/

: (0-22) 653 10 00
(0-22) 620 85 18
00-919 Warszawa ul. Świętokrzyska 11/21
RePEc:edi:nbpgvpl (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Piotr Krupa & Paweł Skrzypczyński, 2012. "Are business cycles in the US and emerging economies synchronized?," NBP Working Papers 111, Narodowy Bank Polski, Economic Research Department.
  2. Jakub Muck & Pawel Skrzypczynski, 2012. "Can we beat the random walk in forecasting CEE exchange rates?," NBP Working Papers 127, Narodowy Bank Polski, Economic Research Department.
  3. Michal Rubaszek & Pawel Skrzypczynski & Grzegorz Koloch, 2011. "Forecasting the Polish zloty with non-linear models," NBP Working Papers 81, Narodowy Bank Polski, Economic Research Department.
  4. Kolasa, Marcin & Rubaszek, Michał & Skrzypczyński, Paweł, 2009. "Putting the New Keynesian DSGE model to the real-time forecasting test," Working Paper Series 1110, European Central Bank.
  5. Michal Rubaszek & Pawel Skrzypczynski, 2007. "Can a simple DSGE model outperform Professional Forecasters?," Working Papers 5, Department of Applied Econometrics, Warsaw School of Economics.

Articles

  1. Marcin Kolasa & Michał Rubaszek & Paweł Skrzypczyński, 2012. "Putting the New Keynesian DSGE Model to the Real‐Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
  2. Michał Rubaszek & Paweł Skrzypczyński & Grzegorz Koloch, 2010. "Forecasting the Polish Zloty with Non-Linear Models," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 2(2), pages 151-167, March.
  3. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. Kolasa, Marcin & Rubaszek, Michał & Skrzypczyński, Paweł, 2009. "Putting the New Keynesian DSGE model to the real-time forecasting test," Working Paper Series 1110, European Central Bank.

    Mentioned in:

    1. DSGE models and forecasting
      by Christian Zimmermann in NEP-DGE blog on 2009-12-21 06:35:25

RePEc Biblio mentions

As found on the RePEc Biblio, the curated bibliography of Economics:
  1. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.

    Mentioned in:

    1. > Schools of Economic Thought, Epistemology of Economics > Economic Methodology > Dynamic Stochastic General Equilibrium > Estimated DSGE Models > Forecasting with DSGE Models

Working papers

  1. Jakub Muck & Pawel Skrzypczynski, 2012. "Can we beat the random walk in forecasting CEE exchange rates?," NBP Working Papers 127, Narodowy Bank Polski, Economic Research Department.

    Cited by:

    1. Hamid Baghestani & Liliana Danila, 2014. "Interest Rate and Exchange Rate Forecasting in the Czech Republic: Do Analysts Know Better than a Random Walk?," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(4), pages 282-295, September.

  2. Michal Rubaszek & Pawel Skrzypczynski & Grzegorz Koloch, 2011. "Forecasting the Polish zloty with non-linear models," NBP Working Papers 81, Narodowy Bank Polski, Economic Research Department.

    Cited by:

    1. Michal Rubaszek & Pawel Skrzypczynski & Grzegorz Koloch, 2011. "Forecasting the Polish zloty with non-linear models," NBP Working Papers 81, Narodowy Bank Polski, Economic Research Department.
    2. Jakub Muck & Pawel Skrzypczynski, 2012. "Can we beat the random walk in forecasting CEE exchange rates?," NBP Working Papers 127, Narodowy Bank Polski, Economic Research Department.

  3. Kolasa, Marcin & Rubaszek, Michał & Skrzypczyński, Paweł, 2009. "Putting the New Keynesian DSGE model to the real-time forecasting test," Working Paper Series 1110, European Central Bank.

    Cited by:

    1. Stelios D. Bekiros & Alessia Paccagnini, 2014. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Open Access publications 10197/7588, School of Economics, University College Dublin.
    2. Roberta Cardani & Alessia Paccagnini & Stelios D. Bekiros, 2017. "The Effectiveness of Forward Guidance in an Estimated DSGE Model for the Euro Area: the Role of Expectations," Working Papers 201701, School of Economics, University College Dublin.
    3. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, Elsevier.
    4. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    5. Bekiros, Stelios D. & Paccagnini, Alessia, 2015. "Macroprudential Policy And Forecasting Using Hybrid Dsge Models With Financial Frictions And State Space Markov-Switching Tvp-Vars," Macroeconomic Dynamics, Cambridge University Press, vol. 19(07), pages 1565-1592, October.
    6. Stefano Neri & Tiziano Ropele, 2012. "Imperfect Information, Real‐Time Data and Monetary Policy in the Euro Area," Economic Journal, Royal Economic Society, vol. 122(561), pages 651-674, June.
    7. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.
    8. Stelios Bekiros & Alessia Paccagnini, 2013. "Policy-oriented macroeconomic forecasting with hybrid DGSE and time-varying parameter VAR models," Working Papers 236, University of Milano-Bicocca, Department of Economics, revised Feb 2013.
    9. Renata Wróbel-Rotter, 2016. "Impulse Response Functions in the Dynamic Stochastic General Equilibrium Vector Autoregression Model," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 8(2), pages 93-114, June.
    10. Kolasa, Marcin & Rubaszek, Michał, 2014. "Forecasting with DSGE models with financial frictions," Dynare Working Papers 40, CEPREMAP.
    11. Villa, Stefania, 2016. "Financial Frictions In The Euro Area And The United States: A Bayesian Assessment," Macroeconomic Dynamics, Cambridge University Press, vol. 20(05), pages 1313-1340, July.
    12. Luca Fanelli & Marco M. Sorge, 2015. "Indeterminacy, Misspecification and Forecastability: Good Luck in Bad Policy?," CSEF Working Papers 402, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    13. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, Elsevier.
    14. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    15. Stelios D. Bekiros & Alessia Paccagnini, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Open Access publications 10197/7322, School of Economics, University College Dublin.
    16. Marcin Kolasa & Michał Rubaszek, 2014. "How frequently should we re-estimate DSGE models?," NBP Working Papers 194, Narodowy Bank Polski, Economic Research Department.
    17. João Valle e Azevedo & Inês Gonçalves, 2015. "Macroeconomic Forecasting Starting from Survey Nowcasts," Working Papers w201502, Banco de Portugal, Economics and Research Department.
    18. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2018. "Does a financial accelerator improve forecasts during financial crises?: Evidence from Japan with Prediction Pool Methods," MPRA Paper 85523, University Library of Munich, Germany.
    19. Alice Albonico & Alessia Paccagnini & Patrizio Tirelli, 2014. "Estimating a DSGE model with Limited Asset Market Participation for the Euro Area," Working Papers 286, University of Milano-Bicocca, Department of Economics, revised Nov 2014.
    20. Martin Slanicay & Jan Čapek & Miroslav Hloušek, 2016. "Some Notes On Problematic Issues In Dsge Models," Economic Annals, Faculty of Economics, University of Belgrade, vol. 61(210), pages 79-100, July - Se.
    21. Roberta Cardani & Alessia Paccagnini & Stefania Villa, 2015. "Forecasting in a DSGE Model with Banking Intermediation: Evidence from the US," Working Papers 292, University of Milano-Bicocca, Department of Economics, revised Feb 2015.
    22. Capek Jan, 2015. "Estimating DSGE model parameters in a small open economy: Do real-time data matter?," Review of Economic Perspectives, De Gruyter Open, vol. 15(1), pages 89-114, March.
    23. Roberta Cardani & Alessia Paccagnini & Stefania Villa, 2015. "Forecasting with Instabilities: an Application to DSGE Models with Financial Frictions," Working Papers 201523, School of Economics, University College Dublin.

  4. Michal Rubaszek & Pawel Skrzypczynski, 2007. "Can a simple DSGE model outperform Professional Forecasters?," Working Papers 5, Department of Applied Econometrics, Warsaw School of Economics.

    Cited by:

    1. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, Elsevier.

Articles

  1. Marcin Kolasa & Michał Rubaszek & Paweł Skrzypczyński, 2012. "Putting the New Keynesian DSGE Model to the Real‐Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
    See citations under working paper version above.
  2. Michał Rubaszek & Paweł Skrzypczyński & Grzegorz Koloch, 2010. "Forecasting the Polish Zloty with Non-Linear Models," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 2(2), pages 151-167, March.
    See citations under working paper version above.
  3. Rubaszek, Michal & Skrzypczynski, Pawel, 2008. "On the forecasting performance of a small-scale DSGE model," International Journal of Forecasting, Elsevier, vol. 24(3), pages 498-512.

    Cited by:

    1. Stelios D. Bekiros & Alessia Paccagnini, 2014. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Open Access publications 10197/7588, School of Economics, University College Dublin.
    2. Sergey Ivashchenko & Rangan Gupta, 2017. "Near-Rational Expectations: How Far are Surveys from Rationality?," EERI Research Paper Series EERI RP 2017/04, Economics and Econometrics Research Institute (EERI), Brussels.
    3. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, Elsevier.
    4. Österholm, Pär, 2012. "The limited usefulness of macroeconomic Bayesian VARs when estimating the probability of a US recession," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 76-86.
    5. Stefano Neri & Tiziano Ropele, 2012. "Imperfect Information, Real‐Time Data and Monetary Policy in the Euro Area," Economic Journal, Royal Economic Society, vol. 122(561), pages 651-674, June.
    6. Andrzej Kociecki & Marcin Kolasa & Michal Rubaszek, 2011. "Predictivistic Bayesian Forecasting System," NBP Working Papers 87, Narodowy Bank Polski, Economic Research Department.
    7. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.
    8. Kitlinski, Tobias & Schmidt, Torsten, 2011. "The Forecasting Performance of an Estimated Medium Run Model," Ruhr Economic Papers 301, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    9. Stelios Bekiros & Alessia Paccagnini, 2013. "Policy-oriented macroeconomic forecasting with hybrid DGSE and time-varying parameter VAR models," Working Papers 236, University of Milano-Bicocca, Department of Economics, revised Feb 2013.
    10. Kolasa, Marcin & Rubaszek, Michał, 2014. "Forecasting with DSGE models with financial frictions," Dynare Working Papers 40, CEPREMAP.
    11. Falch, Nina Skrove & Nymoen, Ragnar, 2011. "The accuracy of a forecast targeting central bank," Economics Discussion Papers 2011-6, Kiel Institute for the World Economy (IfW).
    12. Gonzalo Fernandez-de-Córdoba & José L. Torres, 2009. "Forecasting the Spanish economy with an Augmented VAR-DSGE model," Working Papers 2009-1, Universidad de Málaga, Department of Economic Theory, Málaga Economic Theory Research Center.
    13. Periklis Gogas & Theophilos Papadimitriou & Elvira Takli, 2013. "Comparison of simple sum and Divisia monetary aggregates in GDP forecasting: a support vector machines approach," Economics Bulletin, AccessEcon, vol. 33(2), pages 1101-1115.
    14. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    15. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, Elsevier.
    16. Gunter, Ulrich & Önder, Irem, 2015. "Forecasting international city tourism demand for Paris: Accuracy of uni- and multivariate models employing monthly data," Tourism Management, Elsevier, vol. 46(C), pages 123-135.
    17. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    18. Stelios D. Bekiros & Alessia Paccagnini, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Open Access publications 10197/7322, School of Economics, University College Dublin.
    19. João Valle e Azevedo, 2011. "Rational vs. professional forecasts," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    20. Sergey Ivashchenko, 2013. "Dynamic Stochastic General Equilibrium Model with Banks and Endogenous Defaults of Firms," EUSP Department of Economics Working Paper Series Ec-02/13, European University at St. Petersburg, Department of Economics.
    21. Marcin Kolasa & Michał Rubaszek, 2014. "How frequently should we re-estimate DSGE models?," NBP Working Papers 194, Narodowy Bank Polski, Economic Research Department.
    22. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, Research Program on Forecasting.
    23. Sergey Ivashchenko, 2015. "A 5-sector DSGE Model of Russia," EUSP Department of Economics Working Paper Series Ec-01/15, European University at St. Petersburg, Department of Economics.
    24. João Valle e Azevedo & Inês Gonçalves, 2015. "Macroeconomic Forecasting Starting from Survey Nowcasts," Working Papers w201502, Banco de Portugal, Economics and Research Department.
    25. Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," CFS Working Paper Series 577, Center for Financial Studies (CFS).
    26. Sergey Ivashchenko, 2014. "Forecasting in a Non-Linear DSGE Model," EUSP Department of Economics Working Paper Series Ec-02/14, European University at St. Petersburg, Department of Economics.
    27. Dan S. Rickman, 2010. "Modern Macroeconomics And Regional Economic Modeling," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 23-41.
    28. Kolasa, Marcin & Rubaszek, Michał & Skrzypczyński, Paweł, 2009. "Putting the New Keynesian DSGE model to the real-time forecasting test," Working Paper Series 1110, European Central Bank.
    29. Nyberg, Henri & Saikkonen, Pentti, 2014. "Forecasting with a noncausal VAR model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 536-555.
    30. Sergey Ivashchenko, 2014. "Near-Rational Expectations: How Far Are Surveys from Rationality?," EUSP Department of Economics Working Paper Series Ec-06/14, European University at St. Petersburg, Department of Economics.
    31. Christoffel, Kai & Warne, Anders & Coenen, Günter, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    32. Víctor López-Pérez, 2017. "Do professional forecasters behave as if they believed in the New Keynesian Phillips Curve for the euro area?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 147-174, February.
    33. Kocięcki, Andrzej & Kolasa, Marcin & Rubaszek, Michał, 2012. "A Bayesian method of combining judgmental and model-based density forecasts," Economic Modelling, Elsevier, vol. 29(4), pages 1349-1355.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 3 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-CBA: Central Banking (3) 2009-12-19 2011-04-16 2012-10-27
  2. NEP-FOR: Forecasting (3) 2009-12-19 2011-04-16 2012-10-27
  3. NEP-DGE: Dynamic General Equilibrium (1) 2009-12-19
  4. NEP-ECM: Econometrics (1) 2009-12-19
  5. NEP-MON: Monetary Economics (1) 2012-10-27
  6. NEP-TRA: Transition Economics (1) 2012-10-27

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Pawel Skrzypczynski
(Paweł Skrzypczyński) should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.