IDEAS home Printed from https://ideas.repec.org/p/sek/iacpro/5408084.html
   My bibliography  Save this paper

Bayesian Forecast Combination in VAR-DSGE Models

Author

Listed:
  • Kuo-Hsuan Chin

    (Department of Economics, Feng Chia University)

  • Xue Li

    (Department of Economics, Institute of Chinese Financial Studies, Southwestern University of Finance and Economics)

Abstract

We evaluate the performance of the individual and combination forecasts in the estimated Bayesian VARs with economic and non-economic information. Specifically, we conduct an out-of-sample forecasting experiment in the model with statistical and/or DSGE priors over the time period before and after the financial crisis. In the most of cases, we obtain the unbiased forecasts of the interest rate but the biased forecasts of output growth and inflation rates under the unbiasedness test. In particular, we find the estimation of Bayesian VARs with economic information about the financial friction is helpful to improve the forecasting performance of the interest rate, evaluated in terms of the modified DM test, point and density forecasts. Moreover, the combination forecasts of the interest rate generated from the model with both statistical and DSGE priors are unbiased, and they also perform better than the combination or the individual forecasts generated with only statistical priors at statistically significant level of 5%. The selection of the weighting-scheme in forecast combination, adopting equal weights for the simple average or the log predictive likelihoods in Bayesian model averaging, is irrelevant to the conclusion made above.

Suggested Citation

  • Kuo-Hsuan Chin & Xue Li, 2017. "Bayesian Forecast Combination in VAR-DSGE Models," Proceedings of International Academic Conferences 5408084, International Institute of Social and Economic Sciences.
  • Handle: RePEc:sek:iacpro:5408084
    as

    Download full text from publisher

    File URL: https://iises.net/proceedings/32nd-international-academic-conference-geneva/table-of-content/detail?cid=54&iid=008&rid=8084
    File Function: First version, 2017
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fiorentini, Gabriele & Sentana, Enrique, 1998. "Conditional Means of Time Series Processes and Time Series Processes for Conditional Means," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1101-1118, November.
    2. Luca Benati & Paolo Surico, 2008. "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.
    3. Marcin Kolasa & MichaŁ Rubaszek & PaweŁ SkrzypczyŃski, 2012. "Putting the New Keynesian DSGE Model to the Real-Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
    4. Ghent, Andra C., 2009. "Comparing DSGE-VAR forecasting models: How big are the differences?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 864-882, April.
    5. Ireland, Peter N., 2003. "Endogenous money or sticky prices?," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1623-1648, November.
    6. Lubik, Thomas A. & Schorfheide, Frank, 2003. "Computing sunspot equilibria in linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 273-285, November.
    7. Bernanke, Ben S. & Gertler, Mark & Gilchrist, Simon, 1999. "The financial accelerator in a quantitative business cycle framework," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 21, pages 1341-1393, Elsevier.
    8. Jonathan H. Wright, 2009. "Forecasting US inflation by Bayesian model averaging," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
    9. Ippei Fujiwara & Yasuo Hirose, 2014. "Indeterminacy and Forecastability," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(1), pages 243-251, February.
    10. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    11. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    12. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    13. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    14. Fanelli, Luca, 2012. "Determinacy, indeterminacy and dynamic misspecification in linear rational expectations models," Journal of Econometrics, Elsevier, vol. 170(1), pages 153-163.
    15. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    16. Ingram, Beth F. & Whiteman, Charles H., 1994. "Supplanting the 'Minnesota' prior: Forecasting macroeconomic time series using real business cycle model priors," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 497-510, December.
    17. Sune Karlsson & Tor Jacobson, 2004. "Finding good predictors for inflation: a Bayesian model averaging approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 479-496.
    18. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    19. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    20. Dimitris Korobilis, 2008. "Forecasting in vector autoregressions with many predictors," Advances in Econometrics, in: Bayesian Econometrics, pages 403-431, Emerald Group Publishing Limited.
    21. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    22. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    23. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    24. Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016. "Dynamic prediction pools: An investigation of financial frictions and forecasting performance," Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
    25. Ian Christensen & Ali Dib, 2008. "The Financial Accelerator in an Estimated New Keynesian Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(1), pages 155-178, January.
    26. Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2010. "Inflation-Gap Persistence in the US," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 43-69, January.
    27. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    28. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    29. Kolasa, Marcin & Rubaszek, Michał, 2015. "Forecasting using DSGE models with financial frictions," International Journal of Forecasting, Elsevier, vol. 31(1), pages 1-19.
    30. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
    31. Fanelli, Luca & Sorge, Marco M., 2017. "Indeterminate forecast accuracy under indeterminacy," Journal of Macroeconomics, Elsevier, vol. 53(C), pages 57-70.
    32. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lewis N.K. Mambo, 2024. "From Multidimensional Ornstein - Uhlenbeck Process to Bayesian Vector Autoregressive Process," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 15(1), pages 1-32, December.
    2. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    3. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    4. Xiaowu Huang & Xin Zhao & Ao Jiao & Jianming Zheng, 2024. "Network Effects in Global Carbon Transfer: New Evidence from a Carbon-Connectedness Network Centered on China," Sustainability, MDPI, vol. 16(10), pages 1-32, May.
    5. Salha Ben Salem & Moez Labidi, 2024. "Financial friction and optimal monetary policy: analysis of DSGE model with financial friction and price sticky," SN Business & Economics, Springer, vol. 4(7), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuo‐Hsuan Chin, 2022. "Inflation persistence and monetary policy: DSGE‐VAR approach," Manchester School, University of Manchester, vol. 90(6), pages 715-729, December.
    2. Fanelli, Luca & Sorge, Marco M., 2017. "Indeterminate forecast accuracy under indeterminacy," Journal of Macroeconomics, Elsevier, vol. 53(C), pages 57-70.
    3. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2018. "Does a financial accelerator improve forecasts during financial crises?: Evidence from Japan with Prediction Pool Methods," MPRA Paper 85523, University Library of Munich, Germany.
    4. Čapek, Jan & Crespo Cuaresma, Jesús & Hauzenberger, Niko & Reichel, Vlastimil, 2023. "Macroeconomic forecasting in the euro area using predictive combinations of DSGE models," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1820-1838.
    5. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    6. Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2019. "Does a financial accelerator improve forecasts during financial crises? Evidence from Japan with prediction-pooling methods," Journal of Asian Economics, Elsevier, vol. 60(C), pages 45-68.
    7. Cai, Michael & Del Negro, Marco & Giannoni, Marc P. & Gupta, Abhi & Li, Pearl & Moszkowski, Erica, 2019. "DSGE forecasts of the lost recovery," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1770-1789.
    8. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    9. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    10. Qazi Haque, 2022. "Monetary Policy, Inflation Target, and the Great Moderation: An Empirical Investigation," International Journal of Central Banking, International Journal of Central Banking, vol. 18(4), pages 1-52, October.
    11. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    12. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    13. Giovanni Nicolò, 2025. "US Monetary Policy and Indeterminacy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(2), pages 195-213, March.
    14. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    17. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    18. Alice Albonico & Alessia Paccagnini & Patrizio Tirelli, 2019. "Limited Asset Market Participation And The Euro Area Crisis: An Empirical Dsge Model," Economic Inquiry, Western Economic Association International, vol. 57(3), pages 1302-1323, July.
    19. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    20. Luca Fanelli & Marco M. Sorge, 2015. "Indeterminacy, Misspecification and Forecastability: Good Luck in Bad Policy?," CSEF Working Papers 402, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sek:iacpro:5408084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klara Cermakova (email available below). General contact details of provider: https://iises.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.