IDEAS home Printed from https://ideas.repec.org/e/pce33.html
   My authors  Follow this author

Maria de Lourdes Centeno

Not to be confused with: Mario Centeno

Personal Details

First Name:Maria de Lourdes
Middle Name:
Last Name:Centeno
Suffix:
RePEc Short-ID:pce33
https://aquila.iseg.utl.pt/aquila/homepage/f119

Affiliation

Centro de Matemática Aplicada à Previsão e Decisão Económica (CEMAPRE)
Research in Economics and Mathematics (REM)
Instituto Superior de Economia e Gestão (ISEG)
Universidade de Lisboa

Lisboa, Portugal
http://cemapre.iseg.ulisboa.pt/
RePEc:edi:cmutlpt (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Andrade e Silva, J. M. & Centeno, M. de Lourdes, 2017. "Ratemaking Of Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 47(3), pages 875-894, September.
  2. Guerra, Manuel & Centeno, M.L., 2012. "Are quantile risk measures suitable for risk-transfer decisions?," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 446-461.
  3. Guerra, Manuel & Centeno, Maria de Lourdes, 2010. "Optimal Reinsurance for Variance Related Premium Calculation Principles 1," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 97-121, May.
  4. Centeno, M.L. & Guerra, M., 2010. "The optimal reinsurance strategy -- the individual claim case," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 450-460, June.
  5. Guerra, Manuel & de Lourdes Centeno, Maria, 2008. "Optimal reinsurance policy: The adjustment coefficient and the expected utility criteria," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 529-539, April.
  6. de Lourdes Centeno, Maria, 2005. "Dependent risks and excess of loss reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 229-238, October.
  7. Maria de, Lourdes Centeno & João Andrade, e Silva, 2005. "Applying the Proportional Hazard Premium Calculation Principle," ASTIN Bulletin, Cambridge University Press, vol. 35(2), pages 409-425, November.
  8. João Manuel Andrade e Silva & Maria de Lourdes Centeno, 2005. "A Note on Bonus Scales," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(4), pages 601-607, December.
  9. Centeno, Maria de Lourdes & Simoes, Onofre & Silva, Joao Andrade e & dos Reis, Alfredo Egidio, 2003. "Preface," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 209-209, October.
  10. Paulo J. R. Pinheiro & João Manuel Andrade e Silva & Maria De Lourdes Centeno, 2003. "Bootstrap Methodology in Claim Reserving," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 701-714, December.
  11. Centeno, Maria de Lourdes, 2002. "Measuring the effects of reinsurance by the adjustment coefficient in the Sparre Anderson model," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 37-49, February.
  12. Centeno, Maria de Lourdes, 2002. "Excess of loss reinsurance and Gerber's inequality in the Sparre Anderson model," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 415-427, December.
  13. de Lourdes Centeno, Maria & Manuel Andrade e Silva, Joao, 2001. "Bonus systems in an open portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 341-350, June.
  14. e Silva, João Manuel Andrade & Centeno, Maria de Lourdes, 1998. "Comparing Risk Adjusted Premiums from the Reinsurance Point of View," ASTIN Bulletin, Cambridge University Press, vol. 28(2), pages 221-239, November.
  15. Centeno, Maria de Lourdes, 1997. "Excess of Loss Reinsurance and the Probability of Ruin in Finite Horizon," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 59-70, May.
  16. Centeno, Maria de Lourdes, 1995. "The Effect of the Retention Limit on the Risk Reserve," ASTIN Bulletin, Cambridge University Press, vol. 25(1), pages 67-74, May.
  17. Centeno, Lourdes & Simões, Onofre, 1991. "Combining Quota-Share and Excess of Loss Treaties on the Reinsurance of n Independent Risks," ASTIN Bulletin, Cambridge University Press, vol. 21(1), pages 41-55, April.
  18. Centeno, Lourdes, 1989. "The Buhlmann--Straub Model with the premium calculated according to the variance principle," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 3-10, March.
  19. Centeno, Lourdes, 1986. "Measuring the effects of reinsurance by the adjustment coefficient," Insurance: Mathematics and Economics, Elsevier, vol. 5(2), pages 169-182, April.
  20. Centeno, Lourdes, 1985. "On Combining Quota-Share and Excess of Loss," ASTIN Bulletin, Cambridge University Press, vol. 15(1), pages 49-63, April.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Guerra, Manuel & Centeno, M.L., 2012. "Are quantile risk measures suitable for risk-transfer decisions?," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 446-461.

    Cited by:

    1. Chi, Yichun & Tan, Ken Seng & Zhuang, Sheng Chao, 2020. "A Bowley solution with limited ceded risk for a monopolistic reinsurer," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 188-201.
    2. Albrecher, Hansjörg & Cani, Arian, 2019. "On randomized reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 67-78.
    3. Cheung, Ka Chun & Phillip Yam, Sheung Chi & Yuen, Fei Lung & Zhang, Yiying, 2020. "Concave distortion risk minimizing reinsurance design under adverse selection," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 155-165.
    4. Chi, Yichun, 2012. "Optimal reinsurance under variance related premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 310-321.

  2. Guerra, Manuel & Centeno, Maria de Lourdes, 2010. "Optimal Reinsurance for Variance Related Premium Calculation Principles 1," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 97-121, May.

    Cited by:

    1. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    2. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "Convex ordering for insurance preferences," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 409-416.
    3. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    4. Chi, Yichun, 2018. "Insurance choice under third degree stochastic dominance," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 198-205.
    5. Guerra, Manuel & Centeno, M.L., 2012. "Are quantile risk measures suitable for risk-transfer decisions?," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 446-461.
    6. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    7. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    8. Lu, ZhiYi & Liu, LePing & Meng, ShengWang, 2013. "Optimal reinsurance with concave ceded loss functions under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 46-51.
    9. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "The optimal insurance under disappointment theories," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 77-90.
    10. Chen, Lv & Shen, Yang & Su, Jianxi, 2020. "A continuous-time theory of reinsurance chains," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 129-146.
    11. Zhang, Xin & Meng, Hui & Zeng, Yan, 2016. "Optimal investment and reinsurance strategies for insurers with generalized mean–variance premium principle and no-short selling," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 125-132.
    12. Centeno, M.L. & Guerra, M., 2010. "The optimal reinsurance strategy -- the individual claim case," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 450-460, June.
    13. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.
    14. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.
    15. Chi, Yichun, 2012. "Optimal reinsurance under variance related premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 310-321.

  3. Centeno, M.L. & Guerra, M., 2010. "The optimal reinsurance strategy -- the individual claim case," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 450-460, June.

    Cited by:

    1. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    2. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    3. Belzunce, Félix & Suárez-Llorens, Alfonso & Sordo, Miguel A., 2012. "Comparison of increasing directionally convex transformations of random vectors with a common copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 385-390.
    4. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.

  4. Guerra, Manuel & de Lourdes Centeno, Maria, 2008. "Optimal reinsurance policy: The adjustment coefficient and the expected utility criteria," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 529-539, April.

    Cited by:

    1. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    2. Begoña Fernández & Daniel Hernández-Hernández & Ana Meda & Patricia Saavedra, 2008. "An optimal investment strategy with maximal risk aversion and its ruin probability," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 159-179, August.
    3. Asimit, Alexandru V. & Badescu, Alexandru M. & Haberman, Steven & Kim, Eun-Seok, 2016. "Efficient risk allocation within a non-life insurance group under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 69-76.
    4. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    5. Matteo Brachetta & Hanspeter Schmidli, 2020. "Optimal reinsurance and investment in a diffusion model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 341-361, June.
    6. Hu, Xiang & Duan, Baige & Zhang, Lianzeng, 2017. "De Vylder approximation to the optimal retention for a combination of quota-share and excess of loss reinsurance with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 48-55.
    7. Dimitrova, Dimitrina S. & Kaishev, Vladimir K., 2010. "Optimal joint survival reinsurance: An efficient frontier approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 27-35, August.
    8. Guerra, Manuel & Centeno, M.L., 2012. "Are quantile risk measures suitable for risk-transfer decisions?," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 446-461.
    9. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    10. Albrecher, Hansjörg & Cani, Arian, 2019. "On randomized reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 67-78.
    11. Xiang Hu & Lianzeng Zhang, 2016. "Ruin Probability in a Correlated Aggregate Claims Model with Common Poisson Shocks: Application to Reinsurance," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 675-689, September.
    12. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    13. Mohamed Badaoui & Begoña Fernández & Anatoliy Swishchuk, 2018. "An Optimal Investment Strategy for Insurers in Incomplete Markets," Risks, MDPI, Open Access Journal, vol. 6(2), pages 1-23, April.
    14. Lu, ZhiYi & Liu, LePing & Meng, ShengWang, 2013. "Optimal reinsurance with concave ceded loss functions under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 46-51.
    15. Liang, Xiaoqing & Liang, Zhibin & Young, Virginia R., 2020. "Optimal reinsurance under the mean–variance premium principle to minimize the probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 128-146.
    16. Belzunce, Félix & Suárez-Llorens, Alfonso & Sordo, Miguel A., 2012. "Comparison of increasing directionally convex transformations of random vectors with a common copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 385-390.
    17. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "The optimal insurance under disappointment theories," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 77-90.
    18. Centeno, M.L. & Guerra, M., 2010. "The optimal reinsurance strategy -- the individual claim case," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 450-460, June.
    19. Cheung, Ka Chun & Phillip Yam, Sheung Chi & Yuen, Fei Lung & Zhang, Yiying, 2020. "Concave distortion risk minimizing reinsurance design under adverse selection," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 155-165.
    20. Matteo Brachetta & Hanspeter Schmidli, 2019. "Optimal Reinsurance and Investment in a Diffusion Model," Papers 1903.12426, arXiv.org.
    21. Yinzhi Wang & Erik B{o}lviken, 2019. "How much is optimal reinsurance degraded by error?," Papers 1912.04175, arXiv.org.
    22. Arian Cani & Stefan Thonhauser, 2017. "An optimal reinsurance problem in the Cramér–Lundberg model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 179-205, April.
    23. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.
    24. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.
    25. Badaoui, Mohamed & Fernández, Begoña, 2013. "An optimal investment strategy with maximal risk aversion and its ruin probability in the presence of stochastic volatility on investments," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 1-13.

  5. de Lourdes Centeno, Maria, 2005. "Dependent risks and excess of loss reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 229-238, October.

    Cited by:

    1. Yuen, Kam Chuen & Liang, Zhibin & Zhou, Ming, 2015. "Optimal proportional reinsurance with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 1-13.
    2. Meng, Hui & Zhou, Ming & Siu, Tak Kuen, 2016. "Optimal reinsurance policies with two reinsurers in continuous time," Economic Modelling, Elsevier, vol. 59(C), pages 182-195.
    3. Caroline Hillairet & Ying Jiao & Anthony Réveillac, 2018. "Pricing formulae for derivatives in insurance using the Malliavin calculus ," Post-Print hal-01561987, HAL.
    4. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    5. Meng, Hui & Siu, Tak Kuen, 2011. "On optimal reinsurance, dividend and reinvestment strategies," Economic Modelling, Elsevier, vol. 28(1), pages 211-218.
    6. Caroline Hillairet & Ying Jiao, 2017. "Pricing formulae for derivatives in insurance using the Malliavin calculus," Working Papers 2017-75, Center for Research in Economics and Statistics.
    7. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    8. Bermúdez i Morata, Lluís, 2009. "A priori ratemaking using bivariate Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 135-141, February.
    9. Bai, Lihua & Cai, Jun & Zhou, Ming, 2013. "Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 664-670.
    10. Lluis Bermúdez i Morata, 2008. "A priori ratemaking using bivariate poisson regression models," Working Papers XREAP2008-09, Xarxa de Referència en Economia Aplicada (XREAP), revised Jul 2008.
    11. Bi, Junna & Liang, Zhibin & Xu, Fangjun, 2016. "Optimal mean–variance investment and reinsurance problems for the risk model with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 245-258.
    12. Nicole Bauerle & Gregor Leimcke, 2020. "Robust Optimal Investment and Reinsurance Problems with Learning," Papers 2001.11301, arXiv.org.
    13. Caroline Hillairet & Ying Jiao & Anthony R'eveillac, 2017. "Pricing formulae for derivatives in insurance using the Malliavin calculus," Papers 1707.05061, arXiv.org.
    14. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB Economics Working Papers 2014/310, Universitat de Barcelona, Facultat d'Economia i Empresa, UB School of Economics.
    15. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.
    16. Anna Castañer & M. Claramunt & Maite Mármol, 2012. "Ruin probability and time of ruin with a proportional reinsurance threshold strategy," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 614-638, October.
    17. Asimit, Alexandru V. & Furman, Edward & Vernic, Raluca, 2010. "On a multivariate Pareto distribution," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 308-316, April.

  6. Paulo J. R. Pinheiro & João Manuel Andrade e Silva & Maria De Lourdes Centeno, 2003. "Bootstrap Methodology in Claim Reserving," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 701-714, December.

    Cited by:

    1. Klaus Schmidt, 2012. "Loss prediction based on run-off triangles," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 265-310, June.
    2. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, Open Access Journal, vol. 5(1), pages 1-21, January.
    3. de Alba, Enrique & Nieto-Barajas, Luis E., 2008. "Claims reserving: A correlated Bayesian model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 368-376, December.
    4. Gareth W. Peters & Mario V. Wuthrich & Pavel V. Shevchenko, 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Papers 1004.2548, arXiv.org.
    5. Wahl, Felix & Lindholm, Mathias & Verrall, Richard, 2019. "The collective reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 34-50.
    6. László Martinek, 2019. "Analysis of Stochastic Reserving Models By Means of NAIC Claims Data," Risks, MDPI, Open Access Journal, vol. 7(2), pages 1-27, June.
    7. Apaydin, Aysen & Baser, Furkan, 2010. "Hybrid fuzzy least-squares regression analysis in claims reserving with geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 113-122, October.
    8. J. Harnau & B. Nielsen, 2017. "Over-dispersed age-period-cohort models," Economics Papers 2017-W06, Economics Group, Nuffield College, University of Oxford.
    9. Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
    10. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    11. Andreas Frohlich & Annegret Weng, 2016. "Parameter uncertainty and reserve risk under Solvency II," Papers 1612.03066, arXiv.org, revised Apr 2017.
    12. Peters, Gareth W. & Wüthrich, Mario V. & Shevchenko, Pavel V., 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 36-51, August.
    13. Álvarez-Jareño, José Antonio & Coll-Serrano, Vicente, 2012. "Estimación de reservas en una compañía aseguradora. Una aplicación en Excel del método Chain-Ladder y Bootstrap || Estimating the Reserves in Insurance Companies: An Excel Application of the Chain-Lad," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 14(1), pages 124-136, December.
    14. Fröhlich, Andreas & Weng, Annegret, 2018. "Parameter uncertainty and reserve risk under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 130-141.
    15. Afaf Antar Zohry & Mostafa Abdelghany Ahmed, 2021. "The Prediction Error of the Chain Ladder Method (With Application to Real Data)," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 12(12), pages 1-14, December.

  7. Centeno, Maria de Lourdes, 2002. "Measuring the effects of reinsurance by the adjustment coefficient in the Sparre Anderson model," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 37-49, February.

    Cited by:

    1. Hu, Xiang & Duan, Baige & Zhang, Lianzeng, 2017. "De Vylder approximation to the optimal retention for a combination of quota-share and excess of loss reinsurance with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 48-55.
    2. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    3. Cerqueti, Roy & Foschi, Rachele & Spizzichino, Fabio, 2009. "A spatial mixed Poisson framework for combination of excess-of-loss and proportional reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 59-64, August.
    4. Verlaak, Robert & Beirlant, Jan, 2003. "Optimal reinsurance programs: An optimal combination of several reinsurance protections on a heterogeneous insurance portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 381-403, October.
    5. Dutang, Christophe & Goulet, Vincent & Pigeon, Mathieu, 2008. "actuar: An R Package for Actuarial Science," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i07).
    6. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB Economics Working Papers 2014/310, Universitat de Barcelona, Facultat d'Economia i Empresa, UB School of Economics.
    7. Centeno, Maria de Lourdes, 2002. "Excess of loss reinsurance and Gerber's inequality in the Sparre Anderson model," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 415-427, December.
    8. Arian Cani & Stefan Thonhauser, 2017. "An optimal reinsurance problem in the Cramér–Lundberg model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 179-205, April.
    9. Ettlin, Nicolas & Farkas, Walter & Kull, Andreas & Smirnow, Alexander, 2020. "Optimal risk-sharing across a network of insurance companies," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 39-47.
    10. Anna Castañer & M. Claramunt & Maite Mármol, 2012. "Ruin probability and time of ruin with a proportional reinsurance threshold strategy," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 614-638, October.

  8. Centeno, Maria de Lourdes, 2002. "Excess of loss reinsurance and Gerber's inequality in the Sparre Anderson model," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 415-427, December.

    Cited by:

    1. Yuen, Kam Chuen & Liang, Zhibin & Zhou, Ming, 2015. "Optimal proportional reinsurance with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 1-13.
    2. Christophe Dutang & Claude Lefèvre & Stéphane Loisel, 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Post-Print hal-00746251, HAL.
    3. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    4. Lesław Gajek & Marcin Rudź, 2020. "Finite-horizon general insolvency risk measures in a regime-switching Sparre Andersen model," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1507-1528, December.
    5. Gajek, Lesław & Rudź, Marcin, 2017. "A generalization of Gerber’s inequality for ruin probabilities in risk-switching models," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 236-240.

  9. de Lourdes Centeno, Maria & Manuel Andrade e Silva, Joao, 2001. "Bonus systems in an open portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 341-350, June.

    Cited by:

    1. Azaare Jacob & Zhao Wu, 2020. "An Alternative Pricing System through Bayesian Estimates and Method of Moments in a Bonus-Malus Framework for the Ghanaian Auto Insurance Market," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 13(7), pages 1-15, July.
    2. Lourdes B. Afonso & Rui M. R. Cardoso & Alfredo D. Egídio dos Reis & Gracinda R. Guerreiro, 2020. "Ruin Probabilities And Capital Requirement for Open Automobile Portfolios With a Bonus‐Malus System Based on Claim Counts," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(2), pages 501-522, June.
    3. Jean Pinquet & Montserrat Guillén & Michel Denuit & Natacha Brouhns, 2003. "Bonus-Malus scales in segmented tariffs with stochastic migration between segments," Post-Print hal-00397084, HAL.
    4. Mahmoudvand Rahim & Tan Chong It & Abbasi Narges, 2017. "Adjusting the Premium Relativities in a Bonus-Malus System: An Integrated Approach Using the First Claim Time and the Number of Claims," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 11(2), pages 1-19, July.

  10. Centeno, Maria de Lourdes, 1997. "Excess of Loss Reinsurance and the Probability of Ruin in Finite Horizon," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 59-70, May.

    Cited by:

    1. Guerra, Manuel & de Lourdes Centeno, Maria, 2008. "Optimal reinsurance policy: The adjustment coefficient and the expected utility criteria," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 529-539, April.
    2. Cerqueti, Roy & Foschi, Rachele & Spizzichino, Fabio, 2009. "A spatial mixed Poisson framework for combination of excess-of-loss and proportional reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 59-64, August.
    3. Centeno, Maria de Lourdes, 2002. "Excess of loss reinsurance and Gerber's inequality in the Sparre Anderson model," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 415-427, December.
    4. Kaishev, Vladimir K. & Dimitrova, Dimitrina S., 2006. "Excess of loss reinsurance under joint survival optimality," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 376-389, December.

  11. Centeno, Maria de Lourdes, 1995. "The Effect of the Retention Limit on the Risk Reserve," ASTIN Bulletin, Cambridge University Press, vol. 25(1), pages 67-74, May.

    Cited by:

    1. Gian Paolo Clemente, 2018. "The Effect of Non-Proportional Reinsurance: A Revision of Solvency II Standard Formula," Risks, MDPI, Open Access Journal, vol. 6(2), pages 1-13, May.
    2. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2015. "The Impact of Reinsurance Strategies on Capital Requirements for Premium Risk in Insurance," Risks, MDPI, Open Access Journal, vol. 3(2), pages 1-19, June.

  12. Centeno, Lourdes & Simões, Onofre, 1991. "Combining Quota-Share and Excess of Loss Treaties on the Reinsurance of n Independent Risks," ASTIN Bulletin, Cambridge University Press, vol. 21(1), pages 41-55, April.

    Cited by:

    1. Fabio Baione & Paolo De Angelis & Massimiliano Menzietti & Agostino Tripodi, 2017. "A comparison of risk transfer strategies for a portfolio of life annuities based on RORAC," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1875-1892, July.
    2. Liang, Xiaoqing & Liang, Zhibin & Young, Virginia R., 2020. "Optimal reinsurance under the mean–variance premium principle to minimize the probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 128-146.
    3. Amir T. Payandeh-Najafabadi & Ali Panahi-Bazaz, 2017. "An Optimal Combination of Proportional and Stop-Loss Reinsurance Contracts From Insurer's and Reinsurer's Viewpoints," Papers 1701.05450, arXiv.org.

  13. Centeno, Lourdes, 1989. "The Buhlmann--Straub Model with the premium calculated according to the variance principle," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 3-10, March.

    Cited by:

    1. Yahia Salhi & Pierre-Emmanuel Thérond & Julien Tomas, 2016. "A Credibility Approach of the Makeham Mortality Law," Post-Print hal-01232683, HAL.

  14. Centeno, Lourdes, 1986. "Measuring the effects of reinsurance by the adjustment coefficient," Insurance: Mathematics and Economics, Elsevier, vol. 5(2), pages 169-182, April.

    Cited by:

    1. Yuen, Kam Chuen & Liang, Zhibin & Zhou, Ming, 2015. "Optimal proportional reinsurance with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 1-13.
    2. Hu, Xiang & Duan, Baige & Zhang, Lianzeng, 2017. "De Vylder approximation to the optimal retention for a combination of quota-share and excess of loss reinsurance with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 48-55.
    3. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    4. Arthur Charpentier, 2010. "Reinsurance, ruin and solvency issues: some pitfalls," Working Papers hal-00463381, HAL.
    5. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    6. Liang, Xiaoqing & Liang, Zhibin & Young, Virginia R., 2020. "Optimal reinsurance under the mean–variance premium principle to minimize the probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 128-146.
    7. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB Economics Working Papers 2014/310, Universitat de Barcelona, Facultat d'Economia i Empresa, UB School of Economics.
    8. Centeno, Maria de Lourdes, 2002. "Excess of loss reinsurance and Gerber's inequality in the Sparre Anderson model," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 415-427, December.
    9. Dickson, David C. M. & Waters, Howard R., 1996. "Reinsurance and ruin," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 61-80, December.
    10. Arian Cani & Stefan Thonhauser, 2017. "An optimal reinsurance problem in the Cramér–Lundberg model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 179-205, April.
    11. Anna Castañer & M. Claramunt & Maite Mármol, 2012. "Ruin probability and time of ruin with a proportional reinsurance threshold strategy," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 614-638, October.
    12. Jong-Hag Jang, 2018. "An Empirical Analysis of the Property Catastrophe Reinsurance," International Business Research, Canadian Center of Science and Education, vol. 11(1), pages 170-183, January.
    13. Centeno, Maria de Lourdes, 2002. "Measuring the effects of reinsurance by the adjustment coefficient in the Sparre Anderson model," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 37-49, February.

  15. Centeno, Lourdes, 1985. "On Combining Quota-Share and Excess of Loss," ASTIN Bulletin, Cambridge University Press, vol. 15(1), pages 49-63, April.

    Cited by:

    1. Hu, Xiang & Duan, Baige & Zhang, Lianzeng, 2017. "De Vylder approximation to the optimal retention for a combination of quota-share and excess of loss reinsurance with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 48-55.
    2. Cerqueti, Roy & Foschi, Rachele & Spizzichino, Fabio, 2009. "A spatial mixed Poisson framework for combination of excess-of-loss and proportional reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 59-64, August.
    3. Verlaak, Robert & Beirlant, Jan, 2003. "Optimal reinsurance programs: An optimal combination of several reinsurance protections on a heterogeneous insurance portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 381-403, October.
    4. Ladoucette, Sophie A. & Teugels, Jef L., 2006. "Analysis of risk measures for reinsurance layers," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 630-639, June.
    5. Centeno, Maria de Lourdes, 2002. "Measuring the effects of reinsurance by the adjustment coefficient in the Sparre Anderson model," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 37-49, February.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Featured entries

This author is featured on the following reading lists, publication compilations, Wikipedia, or ReplicationWiki entries:
  1. Portuguese Economists

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Maria de Lourdes Centeno should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.