IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v46y2010i3p450-460.html
   My bibliography  Save this article

The optimal reinsurance strategy -- the individual claim case

Author

Listed:
  • Centeno, M.L.
  • Guerra, M.

Abstract

This paper is concerned with the optimal form of reinsurance when the cedent seeks to maximize the adjustment coefficient of the retained risk (related to the probability of ultimate ruin)-which we prove to be equivalent to maximizing the expected utility of wealth, with respect to an exponential utility with a certain coefficient of risk aversion-and restricts the reinsurance strategies to functions of the individual claims, which is the case for most nonproportional treaties placed in the market. Assuming that the premium calculation principle is a convex functional we prove the existence and uniqueness of solutions and provide a necessary optimality condition (via needle-like perturbations, widely known in optimal control). These results are used to find the optimal reinsurance policy when the reinsurance loading is increasing with the variance. The optimal contract is described by a nonlinear function, of a similar form than in the aggregate case.

Suggested Citation

  • Centeno, M.L. & Guerra, M., 2010. "The optimal reinsurance strategy -- the individual claim case," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 450-460, June.
  • Handle: RePEc:eee:insuma:v:46:y:2010:i:3:p:450-460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00004-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, September.
    2. Pitrebois, Sandra & Walhin, Jean-François & Denuit, Michel, 2005. "Bonus-malus Systems with Varying Deductibles," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 261-274, May.
    3. Kaluszka, Marek, 2001. "Optimal reinsurance under mean-variance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 61-67, February.
    4. Dickson, David C. M. & Waters, Howard R., 1996. "Reinsurance and ruin," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 61-80, December.
    5. Lesław Gajek & Dariusz Zagrodny, 2004. "Reinsurance Arrangements Maximizing Insurer's Survival Probability," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(3), pages 421-435, September.
    6. Guerra, Manuel & de Lourdes Centeno, Maria, 2008. "Optimal reinsurance policy: The adjustment coefficient and the expected utility criteria," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 529-539, April.
    7. Kaluszka, Marek, 2005. "Optimal reinsurance under convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 375-398, June.
    8. Guerra, Manuel & Centeno, Maria de Lourdes, 2010. "Optimal Reinsurance for Variance Related Premium Calculation Principles 1," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 97-121, May.
    9. Froot, Kenneth A., 2001. "The market for catastrophe risk: a clinical examination," Journal of Financial Economics, Elsevier, vol. 60(2-3), pages 529-571, May.
    10. Sundt, Bjørn & Jewell, William S., 1981. "Further Results on Recursive Evaluation of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 27-39, June.
    11. Deprez, Olivier & Gerber, Hans U., 1985. "On convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 4(3), pages 179-189, July.
    12. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    13. Gajek, Leslaw & Zagrodny, Dariusz, 2000. "Insurer's optimal reinsurance strategies," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 105-112, August.
    14. Centeno, Maria de Lourdes, 1997. "Excess of Loss Reinsurance and the Probability of Ruin in Finite Horizon," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 59-70, May.
    15. Kaluszka, Marek, 2004. "An extension of Arrow's result on optimality of a stop loss contract," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 527-536, December.
    16. Viswanathan, Krupa S. & Lemaire, Jean, 2005. "Bonus-malus Systems in a Deregulated Environment: Forecasting Market Shares Using Diffusion Models," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 299-319, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    2. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    3. Belzunce, Félix & Suárez-Llorens, Alfonso & Sordo, Miguel A., 2012. "Comparison of increasing directionally convex transformations of random vectors with a common copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 385-390.
    4. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.
    5. Kmar Fersi & Kamel Boukhetala & Samir Ben Ammou, 2011. "Stratégie optimale de réduction de l'intervalle de confiance pour l'estimateur de la prime ajustée. Application en assurance automobile," Working Papers hal-00625684, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    2. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    3. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "The optimal insurance under disappointment theories," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 77-90.
    4. Lu, ZhiYi & Liu, LePing & Meng, ShengWang, 2013. "Optimal reinsurance with concave ceded loss functions under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 46-51.
    5. Guerra, Manuel & Centeno, M.L., 2012. "Are quantile risk measures suitable for risk-transfer decisions?," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 446-461.
    6. Chi, Yichun, 2012. "Optimal reinsurance under variance related premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 310-321.
    7. Zhu, Yunzhou & Zhang, Lixin & Zhang, Yi, 2013. "Optimal reinsurance under the Haezendonck risk measure," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1111-1116.
    8. Sung, K.C.J. & Yam, S.C.P. & Yung, S.P. & Zhou, J.H., 2011. "Behavioral optimal insurance," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 418-428.
    9. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    10. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.
    11. Cheung, Ka Chun & Phillip Yam, Sheung Chi & Yuen, Fei Lung & Zhang, Yiying, 2020. "Concave distortion risk minimizing reinsurance design under adverse selection," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 155-165.
    12. Mi Chen & Wenyuan Wang & Ruixing Ming, 2016. "Optimal Reinsurance Under General Law-Invariant Convex Risk Measure and TVaR Premium Principle," Risks, MDPI, vol. 4(4), pages 1-12, December.
    13. Jianfa Cong & Ken Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    14. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance without the nonnegativity constraint on indemnities," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 22-39.
    15. Zheng, Yanting & Cui, Wei, 2014. "Optimal reinsurance with premium constraint under distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 109-120.
    16. Jianfa Cong & Ken Seng Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    17. Chi, Yichun, 2018. "Insurance choice under third degree stochastic dominance," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 198-205.
    18. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2021. "Optimal reinsurance with multiple reinsurers: Competitive pricing and coalition stability," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 302-319.
    19. Albrecher, Hansjörg & Cani, Arian, 2019. "On randomized reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 67-78.
    20. Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2011. "Optimality of general reinsurance contracts under CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 175-187, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:46:y:2010:i:3:p:450-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.