IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v42y2008i2p529-539.html
   My bibliography  Save this article

Optimal reinsurance policy: The adjustment coefficient and the expected utility criteria

Author

Listed:
  • Guerra, Manuel
  • de Lourdes Centeno, Maria

Abstract

This paper is concerned with the optimal form of reinsurance from the ceding company point of view, when the cedent seeks to maximize the adjustment coefficient of the retained risk. We deal with the problem by exploring the relationship between maximizing the adjustment coefficient and maximizing the expected utility of wealth for the exponential utility function, both with respect to the retained risk of the insurer. Assuming that the premium calculation principle is a convex functional and that some other quite general conditions are fulfilled, we prove the existence and uniqueness of solutions and provide a necessary optimal condition. These results are used to find the optimal reinsurance policy when the reinsurance premium calculation principle is the expected value principle or the reinsurance loading is an increasing function of the variance. In the expected value case the optimal form of reinsurance is a stop-loss contract. In the other cases, it is described by a nonlinear function.

Suggested Citation

  • Guerra, Manuel & de Lourdes Centeno, Maria, 2008. "Optimal reinsurance policy: The adjustment coefficient and the expected utility criteria," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 529-539, April.
  • Handle: RePEc:eee:insuma:v:42:y:2008:i:2:p:529-539
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00030-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Centeno, Maria de Lourdes, 1997. "Excess of Loss Reinsurance and the Probability of Ruin in Finite Horizon," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 59-70, May.
    2. Vajda, Stefan, 1962. "Minimum Variance Reinsurance*)," ASTIN Bulletin, Cambridge University Press, vol. 2(2), pages 257-260, September.
    3. Deprez, Olivier & Gerber, Hans U., 1985. "On convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 4(3), pages 179-189, July.
    4. Ohlin, Jan, 1969. "On a class of measures of dispersion with application to optimal reinsurance," ASTIN Bulletin, Cambridge University Press, vol. 5(2), pages 249-266, May.
    5. Kahn, Paul Markham, 1961. "Some Remarks on a Recent Paper by Borch*)," ASTIN Bulletin, Cambridge University Press, vol. 1(5), pages 265-272, July.
    6. anonymous, 1991. "Fed upgrades functional cost analysis program," Financial Update, Federal Reserve Bank of Atlanta, issue Win, pages 1-2,6.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Centeno, M.L. & Guerra, M., 2010. "The optimal reinsurance strategy -- the individual claim case," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 450-460, June.
    2. Chi, Yichun & Weng, Chengguo, 2013. "Optimal reinsurance subject to Vajda condition," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 179-189.
    3. Chi, Yichun & Zhou, Xun Yu & Zhuang, Sheng Chao, 2024. "Variance insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 62-82.
    4. Chi, Yichun, 2018. "Insurance choice under third degree stochastic dominance," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 198-205.
    5. Kaluszka, Marek, 2004. "An extension of Arrow's result on optimality of a stop loss contract," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 527-536, December.
    6. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    7. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    8. Boonen, Tim J. & Liu, Fangda, 2022. "Insurance with heterogeneous preferences," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    9. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    10. Horst, Ulrich & Scheinkman, Jose A., 2006. "Equilibria in systems of social interactions," Journal of Economic Theory, Elsevier, vol. 130(1), pages 44-77, September.
    11. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    12. Qi, Xin & Zhao, Hongyu, 2011. "Some theoretical properties of Silverman's method for Smoothed functional principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 741-767, April.
    13. Li, Peng & Lim, Andrew E.B. & Shanthikumar, J. George, 2010. "Optimal risk transfer for agents with germs," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 1-12, August.
    14. Driessen, Theo S.H. & Fragnelli, Vito & Katsev, Ilya V. & Khmelnitskaya, Anna B., 2011. "On 1-convexity and nucleolus of co-insurance games," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 217-225, March.
    15. Juan-José Ganuza & José S. Penalva, 2005. "On Information and Competition in Private Value Auctions," Working Papers 158, Barcelona School of Economics.
    16. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "Convex ordering for insurance preferences," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 409-416.
    17. Pichler, Alois & Shapiro, Alexander, 2015. "Minimal representation of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 184-193.
    18. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    19. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    20. Burgert, Christian & Rüschendorf, Ludger, 2008. "Allocation of risks and equilibrium in markets with finitely many traders," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 177-188, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:2:p:529-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.