IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2001.11301.html
   My bibliography  Save this paper

Robust Optimal Investment and Reinsurance Problems with Learning

Author

Listed:
  • Nicole Bauerle
  • Gregor Leimcke

Abstract

In this paper we consider an optimal investment and reinsurance problem with partially unknown model parameters which are allowed to be learned. The model includes multiple business lines and dependence between them. The aim is to maximize the expected exponential utility of terminal wealth which is shown to imply a robust approach. We can solve this problem using a generalized HJB equation where derivatives are replaced by generalized Clarke gradients. The optimal investment strategy can be determined explicitly and the optimal reinsurance strategy is given in terms of the solution of an equation. Since this equation is hard to solve, we derive bounds for the optimal reinsurance strategy via comparison arguments.

Suggested Citation

  • Nicole Bauerle & Gregor Leimcke, 2020. "Robust Optimal Investment and Reinsurance Problems with Learning," Papers 2001.11301, arXiv.org.
  • Handle: RePEc:arx:papers:2001.11301
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2001.11301
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bai, Lihua & Cai, Jun & Zhou, Ming, 2013. "Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 664-670.
    2. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
    3. Gu, Ailing & Viens, Frederi G. & Yao, Haixiang, 2018. "Optimal robust reinsurance-investment strategies for insurers with mean reversion and mispricing," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 93-109.
    4. Yuen, Kam Chuen & Liang, Zhibin & Zhou, Ming, 2015. "Optimal proportional reinsurance with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 1-13.
    5. Nicole Bäuerle & Ulrich Rieder, 2007. "Portfolio Optimization With Jumps And Unobservable Intensity Process," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 205-224, April.
    6. Bäuerle, Nicole & Blatter, Anja, 2011. "Optimal control and dependence modeling of insurance portfolios with Lévy dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 398-405, May.
    7. Gu, Ailing & Viens, Frederi G. & Yi, Bo, 2017. "Optimal reinsurance and investment strategies for insurers with mispricing and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 235-249.
    8. Zhang, Xin & Siu, Tak Kuen, 2009. "Optimal investment and reinsurance of an insurer with model uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 81-88, August.
    9. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    10. de Lourdes Centeno, Maria, 2005. "Dependent risks and excess of loss reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 229-238, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole Bauerle & Gregor Leimcke, 2021. "Bayesian optimal investment and reinsurance with dependent financial and insurance risks," Papers 2103.05777, arXiv.org.
    2. Xie, Lin & Chen, Lv & Qian, Linyi & Li, Danping & Yang, Zhixin, 2023. "Optimal investment and consumption strategies for pooled annuity with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 129-155.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Jingyun & Yao, Haixiang & Kang, Zhilin, 2019. "Robust optimal investment–reinsurance strategies for an insurer with multiple dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 157-170.
    2. Nicole Bauerle & Gregor Leimcke, 2021. "Bayesian optimal investment and reinsurance with dependent financial and insurance risks," Papers 2103.05777, arXiv.org.
    3. Guerra, M. & de Moura, A.B., 2021. "Reinsurance of multiple risks with generic dependence structures," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 547-571.
    4. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    5. Bi, Junna & Liang, Zhibin & Xu, Fangjun, 2016. "Optimal mean–variance investment and reinsurance problems for the risk model with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 245-258.
    6. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    7. Li, Danping & Young, Virginia R., 2019. "Optimal reinsurance to minimize the discounted probability of ruin under ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 143-152.
    8. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    9. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2021. "Optimal Reinsurance and Investment under Common Shock Dependence Between Financial and Actuarial Markets," Papers 2105.07524, arXiv.org.
    10. Zhao, Hui & Shen, Yang & Zeng, Yan & Zhang, Wenjun, 2019. "Robust equilibrium excess-of-loss reinsurance and CDS investment strategies for a mean–variance insurer with ambiguity aversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 159-180.
    11. Peng, Xingchun & Chen, Fenge & Wang, Wenyuan, 2021. "Robust optimal investment and reinsurance for an insurer with inside information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 15-30.
    12. Bai, Lihua & Cai, Jun & Zhou, Ming, 2013. "Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 664-670.
    13. Yingxu Tian & Zhongyang Sun, 2018. "Mean-Variance Portfolio Selection in a Jump-Diffusion Financial Market with Common Shock Dependence," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    14. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    15. Danping Li & Dongchen Li & Virginia R. Young, 2017. "Optimality of Excess-Loss Reinsurance under a Mean-Variance Criterion," Papers 1703.01984, arXiv.org, revised Mar 2017.
    16. Guan, Guohui & Liang, Zongxia, 2019. "Robust optimal reinsurance and investment strategies for an AAI with multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 63-78.
    17. Meng, Hui & Liao, Pu & Siu, Tak Kuen, 2019. "Continuous-time optimal reinsurance strategy with nontrivial curved structures," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    18. Fudong Wang & Zhibin Liang, 2022. "Optimal Per-Loss Reinsurance for a Risk Model with a Thinning-Dependence Structure," Mathematics, MDPI, vol. 10(23), pages 1-23, December.
    19. Yingxu Tian & Zhongyang Sun & Junyi Guo, 2022. "Optimal Mean-Variance Investment-Reinsurance Strategy for a Dependent Risk Model with Ornstein-Uhlenbeck Process," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1169-1191, June.
    20. Junna Bi & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal mean–variance investment/reinsurance with common shock in a regime-switching market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(1), pages 109-135, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2001.11301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.