IDEAS home Printed from https://ideas.repec.org/a/wyz/journl/id502.html
   My bibliography  Save this article

Scenario-based stress tests: are they painful enough?

Author

Listed:
  • Colin Ellis

Abstract

No abstract is available for this item.

Suggested Citation

  • Colin Ellis, 2017. "Scenario-based stress tests: are they painful enough?," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 11(2), June.
  • Handle: RePEc:wyz:journl:id:502
    as

    Download full text from publisher

    File URL: http://ce.vizja.pl/en/download-pdf/id/502
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Glenn Hoggarth & Steffen Sorensen & Lea Zicchino, 2005. "Stress tests of UK banks using a VAR approach," Bank of England working papers 282, Bank of England.
    2. Peter Grundke & Kamil Pliszka, 2018. "A macroeconomic reverse stress test," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 1093-1130, May.
    3. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    4. Jeremy Berkowitz, 1999. "A coherent framework for stress-testing," Finance and Economics Discussion Series 1999-29, Board of Governors of the Federal Reserve System (U.S.).
    5. Colin Ellis, 2006. "Elasticities, markups and technical progress: evidence from a state-space approach," Bank of England working papers 300, Bank of England.
    6. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    7. Borio, Claudio & Drehmann, Mathias & Tsatsaronis, Kostas, 2014. "Stress-testing macro stress testing: Does it live up to expectations?," Journal of Financial Stability, Elsevier, vol. 12(C), pages 3-15.
    8. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    9. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Azamat Abdymomunov & Sharon Blei & Bakhodir Ergashev, 2015. "Integrating Stress Scenarios into Risk Quantification Models," Journal of Financial Services Research, Springer;Western Finance Association, vol. 47(1), pages 57-79, February.
    12. Donald Coletti & Benjamin Hunt & David Rose & Robert Tetlow, 1996. "The Bank of Canada's New Quarterly Projection Model. Part 3 , the Dynamic Model : QPM," Technical Reports 75, Bank of Canada.
    13. Kenneth F. Wallis, 2004. "An Assessment of Bank of England and National Institute Inflation Forecast Uncertainties," National Institute Economic Review, National Institute of Economic and Social Research, vol. 189(1), pages 64-71, July.
    14. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    15. Olivier Jean Blanchard & Stanley Fischer, 1989. "Lectures on Macroeconomics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262022834, April.
    16. Nigel Pain & Christine Lewis & Thai-Thanh Dang & Yosuke Jin & Pete Richardson, 2014. "OECD Forecasts During and After the Financial Crisis: A Post Mortem," OECD Economics Department Working Papers 1107, OECD Publishing.
    17. Darren Flood & Philip Lowe, 1995. "Inventories and the Business Cycle," The Economic Record, The Economic Society of Australia, vol. 71(1), pages 27-39, March.
    18. McNeil, Alexander J. & Smith, Andrew D., 2012. "Multivariate stress scenarios and solvency," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 299-308.
    19. Christine Lewis & Nigel Pain, 2014. "Lessons from OECD forecasts during and after the financial crisis," OECD Journal: Economic Studies, OECD Publishing, vol. 2014(1), pages 9-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    2. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    3. Monokroussos, George & Zhao, Yongchen, 2020. "Nowcasting in real time using popularity priors," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1173-1180.
    4. Pompella Maurizio & Dicanio Antonio, 2016. "Bank Vulnerability and Financial Soundness Testing: The Bank Resilience Index," Ekonomika (Economics), Sciendo, vol. 95(3), pages 52-63, December.
    5. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    6. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    7. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    8. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    9. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    10. Vrugt, Evert B., 2009. "U.S. and Japanese macroeconomic news and stock market volatility in Asia-Pacific," Pacific-Basin Finance Journal, Elsevier, vol. 17(5), pages 611-627, November.
    11. Giordani, Paolo & Soderlind, Paul, 2003. "Inflation forecast uncertainty," European Economic Review, Elsevier, vol. 47(6), pages 1037-1059, December.
    12. Clements, Michael P., 2016. "Real-time factor model forecasting and the effects of instability," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 661-675.
    13. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    14. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    15. Clements, Michael P., 2008. "Rounding of probability forecasts : The SPF forecast probabilities of negative output growth," The Warwick Economics Research Paper Series (TWERPS) 869, University of Warwick, Department of Economics.
    16. Qin Zhang & He Ni & Hao Xu, 2023. "Forecasting models for the Chinese macroeconomy in a data‐rich environment: Evidence from large dimensional approximate factor models with mixed‐frequency data," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 719-767, March.
    17. Knüppel, Malte, 2018. "Forecast-error-based estimation of forecast uncertainty when the horizon is increased," International Journal of Forecasting, Elsevier, vol. 34(1), pages 105-116.
    18. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
    19. Stan Hurn & Jing Tian & Lina Xu, 2021. "Assessing the Informational Content of Official Australian Bureau of Meteorology Forecasts of Wind Speed," The Economic Record, The Economic Society of Australia, vol. 97(319), pages 525-547, December.
    20. Orphanides, Athanasios & Williams, John C., 2008. "Learning, expectations formation, and the pitfalls of optimal control monetary policy," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages 80-96, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wyz:journl:id:502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin W. Staniewski, Ph.D. (email available below). General contact details of provider: https://edirc.repec.org/data/vizjapl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.