IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

New insights on the US OIS spreads term structure during the recent financial turmoil

Listed author(s):
  • Claudio Morana

The article investigates the statistical features of the US OIS spreads term structure during the recent financial turmoil, originating from the subprime crisis and the ensuing euro area sovereign debt crisis. By means of a comprehensive econometric modelling strategy, new insights on US money market dynamics during the latter events are achieved. In particular, three common factors, bearing the interpretation of level, slope and curvature factors, are extracted from the term structure of US OIS spreads; the latter are found to convey additional information, relatively to commonly used credit risk measures like the TED or the BAA-AAA corporate spreads, which might be exploited, also within a composite indicator, for the construction of a macroeconomic risk barometer and macroeconomic forecasting.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1080/09603107.2013.864034
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Applied Financial Economics.

Volume (Year): 24 (2014)
Issue (Month): 5 (March)
Pages: 291-317

as
in new window

Handle: RePEc:taf:apfiec:v:24:y:2014:i:5:p:291-317
DOI: 10.1080/09603107.2013.864034
Contact details of provider: Web page: http://www.tandfonline.com/RAFE20

Order Information: Web: http://www.tandfonline.com/pricing/journal/RAFE20

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Heiko Hesse & Nathaniel Frank, 2009. "The Effectiveness of Central Bank Interventions During the First Phase of the Subprime Crisis," IMF Working Papers 09/206, International Monetary Fund.
  2. Stefania D’Amico & William English & David López‐Salido & Edward Nelson, 2012. "The Federal Reserve's Large‐scale Asset Purchase Programmes: Rationale and Effects," Economic Journal, Royal Economic Society, vol. 122(564), pages 415-446, November.
  3. Ricardo J. Caballero & Arvind Krishnamurthy, 2008. "Collective Risk Management in a Flight to Quality Episode," Journal of Finance, American Finance Association, vol. 63(5), pages 2195-2230, October.
  4. De Santis, Roberto A., 2012. "The Euro area sovereign debt crisis: safe haven, credit rating agencies and the spread of the fever from Greece, Ireland and Portugal," Working Paper Series 1419, European Central Bank.
  5. John C. Williams & John B. Taylor, 2009. "A Black Swan in the Money Market," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 58-83, January.
  6. Brunetti, Celso & Gilbert, Christopher L., 2000. "Bivariate FIGARCH and fractional cointegration," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 509-530, December.
  7. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
  8. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
  9. Katsumi Shimotsu, 2006. "Simple (but effective) tests of long memory versus structural breaks," Working Papers 1101, Queen's University, Department of Economics.
  10. Granger, Clive W. J. & Jeon, Yongil, 2004. "Thick modeling," Economic Modelling, Elsevier, vol. 21(2), pages 323-343, March.
  11. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
  12. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
  13. Morana, Claudio, 2007. "Multivariate modelling of long memory processes with common components," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 919-934, October.
  14. Gara Afonso & Anna Kovner & Antoinette Schoar, 2011. "Stressed, Not Frozen: The Federal Funds Market in the Financial Crisis," Journal of Finance, American Finance Association, vol. 66(4), pages 1109-1139, August.
  15. Cassola, Nuno & Morana, Claudio, 2012. "Euro money market spreads during the 2007–? financial crisis," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 548-557.
  16. Veronesi, Pietro & Zingales, Luigi, 2010. "Paulson's gift," Journal of Financial Economics, Elsevier, vol. 97(3), pages 339-368, September.
  17. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
  18. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
  19. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
  20. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
  21. Baillie, Richard T. & Morana, Claudio, 2012. "Adaptive ARFIMA models with applications to inflation," Economic Modelling, Elsevier, vol. 29(6), pages 2451-2459.
  22. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  23. Allen, Franklin & Carletti, Elena & Gale, Douglas, 2009. "Interbank market liquidity and central bank intervention," Journal of Monetary Economics, Elsevier, vol. 56(5), pages 639-652, July.
  24. Filipović, Damir & Trolle, Anders B., 2013. "The term structure of interbank risk," Journal of Financial Economics, Elsevier, vol. 109(3), pages 707-733.
  25. Olson, Eric & Miller, Scott & Wohar, Mark E., 2012. "“Black Swans” before the “Black Swan” evidence from international LIBOR–OIS spreads," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1339-1357.
  26. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  27. Jens H. E. Christensen, 2009. "Have the Fed liquidity facilities had an effect on Libor?," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue aug10.
  28. Ji, Philip Inyeob & In, Francis, 2010. "The impact of the global financial crisis on the cross-currency linkage of LIBOR-OIS spreads," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 575-589, December.
  29. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
  30. Aït-Sahalia, Yacine & Andritzky, Jochen & Jobst, Andreas & Nowak, Sylwia & Tamirisa, Natalia, 2012. "Market response to policy initiatives during the global financial crisis," Journal of International Economics, Elsevier, vol. 87(1), pages 162-177.
  31. Carol Alexander, 2002. "Principal Component Models for Generating Large GARCH Covariance Matrices," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 337-359, July.
  32. Bierens, Herman J, 2000. "Nonparametric Nonlinear Cotrending Analysis, with an Application to Interest and Inflation in the United States," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 323-337, July.
  33. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:24:y:2014:i:5:p:291-317. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.