IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v58y2024i2d10.1007_s11135-023-01710-y.html
   My bibliography  Save this article

Can digital infrastructure enhance economic efficiency? Evidence from China

Author

Listed:
  • Qiaozhe Guo

    (Nanjing University of Aeronautics and Astronautics)

  • Chengxuan Geng

    (Nanjing University of Aeronautics and Astronautics)

  • Nengzhi Yao

    (Nanjing Normal University)

  • Lexin Zhao

    (Nanjing Normal University)

Abstract

Digital development provides a new impetus for the improvement of economic efficiency. Project Broadband China was a program implemented by the Chinese government that provided additional funding for a set of cities to build digital infrastructure. Based on the panel data of 283 cities in China from 2010 to 2018, we take the project as a quasi-nature experiment to examine whether and how digital infrastructure influences regional economic efficiency. Our results of multi-period difference-in-difference analyses suggest that cities that obtained the program support have higher total factor productivity, an implicit proxy for economic efficiency. We further find that this effect can be achieved through the upgrading of regional industrial structure (the transformation from manufacturing industry to tertiary industry). Heterogeneity analyses further suggest that the efficiency effect of Project Broadband China varies across different cities in terms of location, scale, administrative and urbanization levels. Our findings contribute to digitalization research and the literature on economic efficiency, as well as highlight the importance of digital infrastructure construction for improving economic efficiency. Our study also provides valuable practical implications for policymakers (i.e., expanding the scope of Project Broadband China) seeking to improve high-quality economic development through digital infrastructure construction.

Suggested Citation

  • Qiaozhe Guo & Chengxuan Geng & Nengzhi Yao & Lexin Zhao, 2024. "Can digital infrastructure enhance economic efficiency? Evidence from China," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(2), pages 1729-1752, April.
  • Handle: RePEc:spr:qualqt:v:58:y:2024:i:2:d:10.1007_s11135-023-01710-y
    DOI: 10.1007/s11135-023-01710-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-023-01710-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-023-01710-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kong, Qunxi & Peng, Dan & Ni, Yehui & Jiang, Xinyue & Wang, Ziqi, 2021. "Trade openness and economic growth quality of China: Empirical analysis using ARDL model," Finance Research Letters, Elsevier, vol. 38(C).
    2. David Tilson & Kalle Lyytinen & Carsten Sørensen, 2010. "Research Commentary ---Digital Infrastructures: The Missing IS Research Agenda," Information Systems Research, INFORMS, vol. 21(4), pages 748-759, December.
    3. Rudra P. Pradhan & Mak B. Arvin & Mahendhiran Nair & Sara E. Bennett & John H. Hall, 2019. "The information revolution, innovation diffusion and economic growth: an examination of causal links in European countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(3), pages 1529-1563, May.
    4. Moretti, Enrico, 2004. "Estimating the social return to higher education: evidence from longitudinal and repeated cross-sectional data," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 175-212.
    5. Pan, Wenrong & Xie, Tao & Wang, Zhuwang & Ma, Lisha, 2022. "Digital economy: An innovation driver for total factor productivity," Journal of Business Research, Elsevier, vol. 139(C), pages 303-311.
    6. Tone, Kaoru & Toloo, Mehdi & Izadikhah, Mohammad, 2020. "A modified slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 287(2), pages 560-571.
    7. Easterly, William & Rebelo, Sergio, 1993. "Fiscal policy and economic growth: An empirical investigation," Journal of Monetary Economics, Elsevier, vol. 32(3), pages 417-458, December.
    8. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    9. Semykina, Anastasia & Wooldridge, Jeffrey M., 2010. "Estimating panel data models in the presence of endogeneity and selection," Journal of Econometrics, Elsevier, vol. 157(2), pages 375-380, August.
    10. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    11. Matilde Mas & Joaquin Maudos & Francisco Perez & Ezequiel Uriel, 1996. "Infrastructures and Productivity in the Spanish Regions," Regional Studies, Taylor & Francis Journals, vol. 30(7), pages 641-649.
    12. Concetta Castiglione, 2012. "Technical efficiency and ICT investment in Italian manufacturing firms," Applied Economics, Taylor & Francis Journals, vol. 44(14), pages 1749-1763, May.
    13. Lechner, Michael, 2011. "The Estimation of Causal Effects by Difference-in-Difference Methods," Foundations and Trends(R) in Econometrics, now publishers, vol. 4(3), pages 165-224, November.
    14. Miller, Stephen M. & Upadhyay, Mukti P., 2000. "The effects of openness, trade orientation, and human capital on total factor productivity," Journal of Development Economics, Elsevier, vol. 63(2), pages 399-423, December.
    15. Alicia H. Munnell, 1992. "Policy Watch: Infrastructure Investment and Economic Growth," Journal of Economic Perspectives, American Economic Association, vol. 6(4), pages 189-198, Fall.
    16. Alina Sorescu & Martin Schreier, 2021. "Innovation in the digital economy: a broader view of its scope, antecedents, and consequences," Journal of the Academy of Marketing Science, Springer, vol. 49(4), pages 627-631, July.
    17. Kevin J. Stiroh, 2002. "Information Technology and the U.S. Productivity Revival: What Do the Industry Data Say?," American Economic Review, American Economic Association, vol. 92(5), pages 1559-1576, December.
    18. Chen, Yang & Yang, Shengping & Li, Quan, 2022. "How does the development of digital financial inclusion affect the total factor productivity of listed companies? Evidence from China," Finance Research Letters, Elsevier, vol. 47(PB).
    19. Robert E. Hall & Charles I. Jones, 1999. "Why do Some Countries Produce So Much More Output Per Worker than Others?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(1), pages 83-116.
    20. Zhao, Jingfeng & Tang, Jianmin, 2018. "Industrial structure change and economic growth: A China-Russia comparison," China Economic Review, Elsevier, vol. 47(C), pages 219-233.
    21. Lin, Boqiang & Zhou, Yicheng, 2021. "How does vertical fiscal imbalance affect the upgrading of industrial structure? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    22. Pradhan, Rudra P. & Arvin, Mak B. & Nair, Mahendhiran S. & Hall, John H. & Bennett, Sara E., 2021. "Sustainable economic development in India: The dynamics between financial inclusion, ICT development, and economic growth," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    23. Jiang, Song & Zhou, Jie & Qiu, Shuang, 2022. "Digital Agriculture and Urbanization: Mechanism and Empirical Research," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    24. Peneder, Michael, 2003. "Industrial structure and aggregate growth," Structural Change and Economic Dynamics, Elsevier, vol. 14(4), pages 427-448, December.
    25. Shane Greenstein, 2020. "The Basic Economics of Internet Infrastructure," Journal of Economic Perspectives, American Economic Association, vol. 34(2), pages 192-214, Spring.
    26. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    27. Schall, Lawrence D, 1976. "Urban Renewal Policy and Economic Efficiency," American Economic Review, American Economic Association, vol. 66(4), pages 612-628, September.
    28. Rudra P. Pradhan & Mak B. Arvin & Mahendhiran Nair & Sara E. Bennett, 2020. "Sustainable economic growth in the European Union: The role of ICT, venture capital, and innovation," Review of Financial Economics, John Wiley & Sons, vol. 38(1), pages 34-62, January.
    29. Lu, Saite & Shen, Jim H. & Li, Weiping & Zhang, Jun, 2020. "A theory of economic development and dynamics of Chinese economy," Economic Modelling, Elsevier, vol. 86(C), pages 69-87.
    30. Pil Sun Heo & Duk Hee Lee, 2019. "Evolution of the linkage structure of ICT industry and its role in the economic system: the case of Korea," Information Technology for Development, Taylor & Francis Journals, vol. 25(3), pages 424-454, July.
    31. Yang Liu & Yanlin Yang & Huihui Li & Kaiyang Zhong, 2022. "Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    32. Hongshan Ai & Shenglan Hu & Ke Li & Shuai Shao, 2020. "Environmental regulation, total factor productivity, and enterprise duration: Evidence from China," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2284-2296, September.
    33. Serdar Yilmaz & Kingley E. Haynes & Mustafa Dinc, 2002. "Geographic and Network Neighbors: Spillover Effects of Telecommunications Infrastructure," Journal of Regional Science, Wiley Blackwell, vol. 42(2), pages 339-360, May.
    34. Gao, Yuning & Zhang, Meichen & Zheng, Jinghai, 2021. "Accounting and determinants analysis of China's provincial total factor productivity considering carbon emissions," China Economic Review, Elsevier, vol. 65(C).
    35. Wang, Rong & Tan, Junlan, 2021. "Exploring the coupling and forecasting of financial development, technological innovation, and economic growth," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    36. Forman, Chris & Goldfarb, Avi & Greenstein, Shane, 2005. "How did location affect adoption of the commercial Internet? Global village vs. urban leadership," Journal of Urban Economics, Elsevier, vol. 58(3), pages 389-420, November.
    37. Jerzmanowski, Michal, 2007. "Total factor productivity differences: Appropriate technology vs. efficiency," European Economic Review, Elsevier, vol. 51(8), pages 2080-2110, November.
    38. André Hanelt & René Bohnsack & David Marz & Cláudia Antunes Marante, 2021. "A Systematic Review of the Literature on Digital Transformation: Insights and Implications for Strategy and Organizational Change," Journal of Management Studies, Wiley Blackwell, vol. 58(5), pages 1159-1197, July.
    39. Rudra P. Pradhan & Pragyan P. Sahoo, 2021. "Are there links between financial inclusion, mobile telephony, and economic growth? Evidence from Indian states," Applied Economics Letters, Taylor & Francis Journals, vol. 28(4), pages 310-314, February.
    40. Xinshu Zhao & John G. Lynch & Qimei Chen, 2010. "Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 37(2), pages 197-206, August.
    41. Taowu Pei & Lei Gao & Chao Yang & Chang Xu & Yu Tian & Weiming Song, 2021. "The Impact of FDI on Urban PM 2.5 Pollution in China: The Mediating Effect of Industrial Structure Transformation," IJERPH, MDPI, vol. 18(17), pages 1-24, August.
    42. Liu, Yang & Luan, Lin & Wu, Weilong & Zhang, Zhiqiang & Hsu, Yen, 2021. "Can digital financial inclusion promote China's economic growth?," International Review of Financial Analysis, Elsevier, vol. 78(C).
    43. Elitsa R Banalieva & Charles Dhanaraj, 2019. "Internalization theory for the digital economy," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 50(8), pages 1372-1387, October.
    44. Yao, Nengzhi(Chris) & Guo, Qiaozhe & Tsinopoulos, Christos, 2022. "The bright and dark sides of institutional intermediaries: Industry associations and small-firm innovation," Research Policy, Elsevier, vol. 51(1).
    45. Wu, Haitao & Xue, Yan & Hao, Yu & Ren, Siyu, 2021. "How does internet development affect energy-saving and emission reduction? Evidence from China," Energy Economics, Elsevier, vol. 103(C).
    46. Zhou, Xiaoyan & Zhang, Jie & Li, Junpeng, 2013. "Industrial structural transformation and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 57(C), pages 43-51.
    47. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    48. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    2. Young Eun Kim & Norman V. Loayza, 2019. "Productivity Growth: Patterns and Determinants across the World," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(84), pages 36-93.
    3. Li, Shuangyan & Chang, Ge & Zunong, Reyihanguli, 2023. "Does regional digital economy development influence green investment?," Innovation and Green Development, Elsevier, vol. 2(3).
    4. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    5. Suo, Xuekun & Zhang, Longting & Guo, Rong & Lin, Han & Yu, Mingchuan & Du, Xiuhong, 2024. "The inverted U-shaped association between digital economy and corporate total factor productivity: A knowledge-based perspective," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    6. Xiaodan Gao & Jinbao Li, 2024. "China’s Digital Economy: A Dual Mission of Carbon-Emission Reduction and Efficiency Enhancement," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
    7. Mingyue Chen & Shuting Wang & Xiaowen Wang, 2024. "How Does Artificial Intelligence Impact Green Development? Evidence from China," Sustainability, MDPI, vol. 16(3), pages 1-23, February.
    8. Yu, Hongyang & Wang, Jinchao & Xu, Jiajun, 2023. "Assessing the role of digital economy agglomeration in energy conservation and emission reduction: Evidence from China," Energy, Elsevier, vol. 284(C).
    9. Sun, Chuanwang & Khan, Anwar & Xue, Juntao & Huang, Xiaoyong, 2024. "Are digital economy and financial structure driving renewable energy technology innovations: A major eight countries perspective," Applied Energy, Elsevier, vol. 362(C).
    10. Linxiong Chen & Changbiao Zhong & Chong Li, 2022. "Research on the Impact of the Digital Economy on China’s New-Type Urbanization: Based on Spatial and Mediation Models," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    11. Lee, Chien-Chiang & He, Zhi-Wen & Yuan, Zihao, 2023. "A pathway to sustainable development: Digitization and green productivity," Energy Economics, Elsevier, vol. 124(C).
    12. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    13. Zhang, Qiming & Zhao, Xuan, 2024. "Can the digital economy facilitate the optimization of industrial structure in resource-based cities?," Structural Change and Economic Dynamics, Elsevier, vol. 71(C), pages 405-416.
    14. Qiaozhe Guo & Nengzhi(Chris) Yao & Zhe Ouyang & Yaolei Wang, 2024. "Digital development and innovation for environmental sustainability: The role of government support and government intervention," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(4), pages 3389-3404, August.
    15. Junwei Zhao & Yuxiang Zhang & Anhang Chen & Huiqin Zhang, 2022. "Analysis on the Spatio-Temporal Evolution Characteristics of the Impact of China’s Digitalization Process on Green Total Factor Productivity," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    16. Cong Cheng & Hongfang Cui, 2024. "Combining digital and legacy technologies: firm digital transformation strategies—evidence from Chinese manufacturing companies," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    17. Yao, Nengzhi(Chris) & Bai, Junhong & Yu, Zihao & Guo, Qiaozhe, 2025. "Does AI orientation facilitate operational efficiency? A contingent strategic orientation perspective," Journal of Business Research, Elsevier, vol. 186(C).
    18. Di Matteo, Dante & Mariotti, Ilaria & Rossi, Federica, 2023. "Transport infrastructure and economic performance: An evaluation of the Milan-Bologna high-speed rail corridor," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    19. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    20. Fedderke, J.W. & Perkins, P. & Luiz, J.M., 2006. "Infrastructural investment in long-run economic growth: South Africa 1875-2001," World Development, Elsevier, vol. 34(6), pages 1037-1059, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:58:y:2024:i:2:d:10.1007_s11135-023-01710-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.