IDEAS home Printed from https://ideas.repec.org/a/spr/eurasi/v11y2021i1d10.1007_s40821-020-00172-8.html
   My bibliography  Save this article

The impact of artificial intelligence on labor productivity

Author

Listed:
  • Giacomo Damioli

    (Joint Research Centre (JRC))

  • Vincent Van Roy

    (Joint Research Centre (JRC))

  • Daniel Vertesy

    (International Telecommunication Union
    UNU-MERIT)

Abstract

Recent evidence indicates an upsurge in artificial intelligence and robotics (AI) patenting activities in the latest years, suggesting that solutions based on AI technologies might have started to exert an effect on the economy. We test this hypothesis using a worldwide sample of 5257 companies having filed at least a patent related to the field of AI between 2000 and 2016. Our analysis shows that, once controlling for other patenting activities, AI patent applications generate an extra-positive effect on companies’ labor productivity. The effect concentrates on SMEs and services industries, suggesting that the ability to quickly readjust and introduce AI-based applications in the production process is an important determinant of the impact of AI observed to date.

Suggested Citation

  • Giacomo Damioli & Vincent Van Roy & Daniel Vertesy, 2021. "The impact of artificial intelligence on labor productivity," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 11(1), pages 1-25, March.
  • Handle: RePEc:spr:eurasi:v:11:y:2021:i:1:d:10.1007_s40821-020-00172-8
    DOI: 10.1007/s40821-020-00172-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40821-020-00172-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40821-020-00172-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Gordon, 2016. "The Rise and Fall of American Growth: The U.S. Standard of Living since the Civil War," Economics Books, Princeton University Press, edition 1, number 10544.
    2. Benjamin F. Jones, 2009. "The Burden of Knowledge and the "Death of the Renaissance Man": Is Innovation Getting Harder?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 283-317.
    3. Nicholas Bloom & Charles I. Jones & John Van Reenen & Michael Webb, 2020. "Are Ideas Getting Harder to Find?," American Economic Review, American Economic Association, vol. 110(4), pages 1104-1144, April.
    4. Mariacristina Piva & Marco Vivarelli, 2018. "Is Innovation Destroying Jobs? Firm-Level Evidence from the EU," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    5. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    6. Daron Acemoglu & Pascual Restrepo, 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 3-30, Spring.
    7. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    8. Gries, Thomas & Naude, Wim, 2018. "Artificial intelligence, jobs, inequality and productivity: Does aggregate demand matter?," MERIT Working Papers 2018-047, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    9. Tor Jakob Klette & Frode Johansen, 1998. "Accumulation of R&D Capital and Dynamic Firm Performance: A Not-So-Fixed Effect Model," Annals of Economics and Statistics, GENES, issue 49-50, pages 389-419.
    10. repec:fth:harver:1473 is not listed on IDEAS
    11. Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
    12. Bronwyn Hall & Christian Helmers & Mark Rogers & Vania Sena, 2014. "The Choice between Formal and Informal Intellectual Property: A Review," Journal of Economic Literature, American Economic Association, vol. 52(2), pages 375-423, June.
    13. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    14. René Belderbos & Boris Lokshin & Bert Sadowski, 2015. "The returns to foreign R&D," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 46(4), pages 491-504, May.
    15. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    16. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    17. J. Klinger & J. Mateos-Garcia & K. Stathoulopoulos, 2018. "Deep learning, deep change? Mapping the development of the Artificial Intelligence General Purpose Technology," Papers 1808.06355, arXiv.org.
    18. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    19. Tor Jakob Klette, 1996. "R&D, Scope Economies, and Plant Performance," RAND Journal of Economics, The RAND Corporation, vol. 27(3), pages 502-522, Autumn.
    20. Boris Lokshin & René Belderbos & Martin Carree, 2008. "The Productivity Effects of Internal and External R&D: Evidence from a Dynamic Panel Data Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(3), pages 399-413, June.
    21. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    22. Jason Furman & Robert Seamans, 2019. "AI and the Economy," Innovation Policy and the Economy, University of Chicago Press, vol. 19(1), pages 161-191.
    23. Hall, Bronwyn H. & Mairesse, Jacques, 1995. "Exploring the relationship between R&D and productivity in French manufacturing firms," Journal of Econometrics, Elsevier, vol. 65(1), pages 263-293, January.
    24. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    25. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    26. Fujii, Hidemichi & Managi, Shunsuke, 2018. "Trends and priority shifts in artificial intelligence technology invention: A global patent analysis," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 60-69.
    27. Raquel Ortega-Argil�s & Mariacristina Piva & Marco Vivarelli, 2015. "The productivity impact of R&D investment: are high-tech sectors still ahead?," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 24(3), pages 204-222, April.
    28. Robert J. Gordon, 2018. "Why Has Economic Growth Slowed When Innovation Appears to be Accelerating?," NBER Working Papers 24554, National Bureau of Economic Research, Inc.
    29. Archibugi, Daniele & Filippetti, Andrea & Frenz, Marion, 2013. "The impact of the economic crisis on innovation: Evidence from Europe," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1247-1260.
    30. Bogliacino, Francesco & Piva, Mariacristina & Vivarelli, Marco, 2012. "R&D and employment: An application of the LSDVC estimator using European microdata," Economics Letters, Elsevier, vol. 116(1), pages 56-59.
    31. Katrin Hussinger, 2006. "Is Silence Golden? Patents Versus Secrecy At The Firm Level," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(8), pages 735-752.
    32. René Belderbos & Vincent Van Roy & Florence Duvivier, 2013. "International and domestic technology transfers and productivity growth: firm level evidence," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 22(1), pages 1-32, February.
    33. Thomas Hoeren & Francesca Guadagno & Sacha Wunsch-Vincent, 2015. "Breakthrough technologies - Semiconductor, innovation and intellectual property," WIPO Economic Research Working Papers 27, World Intellectual Property Organization - Economics and Statistics Division.
    34. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    35. Mariacristina Piva & Marco Vivarelli, 2005. "Innovation and Employment: Evidence from Italian Microdata," Journal of Economics, Springer, vol. 86(1), pages 65-83, October.
    36. Andrew Keisner & Julio Raffo & Sacha Wunsch-Vincent, 2015. "Breakthrough technologies - Robotics, innovation and intellectual property," WIPO Economic Research Working Papers 30, World Intellectual Property Organization - Economics and Statistics Division.
    37. Gunnar Fors, 1997. "Utilization of R&D Results in the Home and Foreign Plants of Multinationals," Journal of Industrial Economics, Wiley Blackwell, vol. 45(3), pages 341-358, September.
    38. Harhoff, Dietmar & Gambardella, Alfonso & Verspagen, Bart, 2008. "The Value of European Patents," CEPR Discussion Papers 6848, C.E.P.R. Discussion Papers.
    39. Peter N. Gal, 2013. "Measuring Total Factor Productivity at the Firm Level using OECD-ORBIS," OECD Economics Department Working Papers 1049, OECD Publishing.
    40. Giuditta De Prato & Montserrat Lopez Cobo & Sofia Samoili & Riccardo Righi & Miguel Vazquez Prada Baillet & Melisande Cardona, 2019. "The AI Techno-Economic Segment Analysis," JRC Research Reports JRC118071, Joint Research Centre.
    41. Eric J. Bartelsman & Martin Falk & Eva Hagsten & Michael Polder, 2019. "Productivity, technological innovations and broadband connectivity: firm-level evidence for ten European countries," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(1), pages 25-48, March.
    42. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1, March.
    43. Marco Vivarelli, 2013. "Technology, Employment and Skills: An Interpretative Framework," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 66-89, June.
    44. repec:adr:anecst:y:1998:i:49-50:p:15 is not listed on IDEAS
    45. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    46. Neuhäusler, Peter & Frietsch, Rainer & Schubert, Torben & Blind, Knut, 2011. "Patents and the financial performance of firms - An analysis based on stock market data," Discussion Papers "Innovation Systems and Policy Analysis" 28, Fraunhofer Institute for Systems and Innovation Research (ISI).
    47. Fors, Gunnar, 1997. "Utilization of R&D Results in the Home and Foreign Plants of Multinationals," Journal of Industrial Economics, Wiley Blackwell, vol. 45(3), pages 341-358, September.
    48. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    49. Castellani, Davide & Piva, Mariacristina & Schubert, Torben & Vivarelli, Marco, 2019. "R&D and productivity in the US and the EU: Sectoral specificities and differences in the crisis," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 279-291.
    50. Van Roy, Vincent & Vértesy, Dániel & Vivarelli, Marco, 2018. "Technology and employment: Mass unemployment or job creation? Empirical evidence from European patenting firms," Research Policy, Elsevier, vol. 47(9), pages 1762-1776.
    51. Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338, December.
    52. Gordon, Robert J., 2018. "Why Has Economic Growth Slowed When Innovation Appears To Be Accelerating?," CEPR Discussion Papers 13039, C.E.P.R. Discussion Papers.
    53. Marco Vivarelli, 1995. "The Economics of Technology and Employment," Books, Edward Elgar Publishing, number 458.
    54. Thomas Hatzichronoglou, 1997. "Revision of the High-Technology Sector and Product Classification," OECD Science, Technology and Industry Working Papers 1997/2, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damioli, G. & Van Roy, V. & Vertesy, D. & Vivarelli, M., 2021. "May AI revolution be labour-friendly? Some micro evidence from the supply side," GLO Discussion Paper Series 823, Global Labor Organization (GLO).
    2. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2021. "Detecting the labour-friendly nature of AI product innovation," DISCE - Quaderni del Dipartimento di Politica Economica dipe0017, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    3. Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2021. "Will the AI revolution be labour-friendly? Some micro evidence from the supply side," MERIT Working Papers 2021-016, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    4. Van Roy, Vincent & Vértesy, Dániel & Vivarelli, Marco, 2018. "Technology and employment: Mass unemployment or job creation? Empirical evidence from European patenting firms," Research Policy, Elsevier, vol. 47(9), pages 1762-1776.
    5. Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2015. "The Employment Impact of Innovation: Evidence from European Patenting Companies," DISCE - Quaderni del Dipartimento di Politica Economica ispe0075, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    6. Dosi, G. & Piva, M. & Virgillito, M.E. & Vivarelli, M., 2021. "Embodied and disembodied technological change: The sectoral patterns of job-creation and job-destruction," Research Policy, Elsevier, vol. 50(4).
    7. Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2015. "Innovation and Employment in Patenting Firms: Empirical Evidence from Europe," IZA Discussion Papers 9147, Institute of Labor Economics (IZA).
    8. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    9. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    10. Van Roy, Vincent & Vertesy, Daniel & Damioli, Giacomo, 2019. "AI and Robotics Innovation: a Sectoral and Geographical Mapping using Patent Data," GLO Discussion Paper Series 433, Global Labor Organization (GLO).
    11. Borsato, Andrea & Lorentz, André, 2023. "The Kaldor–Verdoorn law at the age of robots and AI," Research Policy, Elsevier, vol. 52(10).
    12. Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    13. repec:gdk:wpaper:67 is not listed on IDEAS
    14. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Yang, Chih-Hai, 2022. "How Artificial Intelligence Technology Affects Productivity and Employment: Firm-level Evidence from Taiwan," Research Policy, Elsevier, vol. 51(6).
    16. Francesco Bogliacino & Marco Vivarelli, 2012. "The Job Creation Effect Of R&D Expenditures," Australian Economic Papers, Wiley Blackwell, vol. 51(2), pages 96-113, June.
    17. Gries, Thomas & Naudé, Wim, 2022. "Modelling artificial intelligence in economics," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 56, pages 1-12.
    18. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2019. "Digitalization and the Future of Work: Macroeconomic Consequences," IZA Discussion Papers 12428, Institute of Labor Economics (IZA).
    19. Naudé, Wim, 2020. "From the Entrepreneurial to the Ossified Economy: Evidence, Explanations and a New Perspective," GLO Discussion Paper Series 539, Global Labor Organization (GLO).
    20. Yingying Lu & Yixiao Zhou, 2021. "A review on the economics of artificial intelligence," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1045-1072, September.
    21. Sergio De Nardis & Francesca Parente, 2022. "Technology and task changes in the major EU countries," Contemporary Economic Policy, Western Economic Association International, vol. 40(2), pages 391-413, April.

    More about this item

    Keywords

    Artificial intelligence; Patents; Labor productivity; GMM-SYS;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurasi:v:11:y:2021:i:1:d:10.1007_s40821-020-00172-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.