IDEAS home Printed from https://ideas.repec.org/p/zbw/glodps/433.html
   My bibliography  Save this paper

AI and Robotics Innovation: a Sectoral and Geographical Mapping using Patent Data

Author

Listed:
  • Van Roy, Vincent
  • Vertesy, Daniel
  • Damioli, Giacomo

Abstract

Economic activities based on the invention, production and distribution of artificial intelligence (AI) technologies have recently emerged worldwide. Yet, little is known about the innovative activities, location and growth performance of AI innovators. This chapter aims to map and analyse the global innovative landscape of AI by exploring 155,000 patents identified as AI-related by means of text-mining techniques. It highlights the emergence and evolution of AI technologies and identifies AI hotspots across the world. It explores the scale and pervasiveness of AI activities across sectors, and evaluates the economic performance of AI innovators using firm accounting information. Finally, it assesses recent trends in venture capital investments towards AI as financial support to promising AI startups. Findings of this chapter reveal a tremendous increase in AI patenting activities since 2013 with a significant boom in 2015-2016. While most of AI patenting activities remain concentrated in the sectors of software programming and manufacturing of electronic equipment and machinery, there are clear signs of cross-fertilisation towards (non-tech) sectors. The market of AI patenting firms is very vibrant and characterised by a large increase of new and small players with economic performances above industry average. This trend is also reflected by the recent increase in venture capital towards AI startups.

Suggested Citation

  • Van Roy, Vincent & Vertesy, Daniel & Damioli, Giacomo, 2019. "AI and Robotics Innovation: a Sectoral and Geographical Mapping using Patent Data," GLO Discussion Paper Series 433, Global Labor Organization (GLO).
  • Handle: RePEc:zbw:glodps:433
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/209574/1/GLO-DP-0433.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Chiacchio & Georgios Petropoulos & David Pichler, 2018. "The impact of industrial robots on EU employment and wages- A local labour market approach," Working Papers 25186, Bruegel.
    2. David Autor & Anna Salomons, 2018. "Is Automation Labor-Displacing? Productivity Growth, Employment, and the Labor Share," NBER Working Papers 24871, National Bureau of Economic Research, Inc.
    3. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    4. Utterback, James M & Abernathy, William J, 1975. "A dynamic model of process and product innovation," Omega, Elsevier, vol. 3(6), pages 639-656, December.
    5. J. Klinger & J. Mateos-Garcia & K. Stathoulopoulos, 2018. "Deep learning, deep change? Mapping the development of the Artificial Intelligence General Purpose Technology," Papers 1808.06355, arXiv.org.
    6. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    7. Fujii, Hidemichi & Managi, Shunsuke, 2018. "Trends and priority shifts in artificial intelligence technology invention: A global patent analysis," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 60-69.
    8. Klepper, Steven, 1997. "Industry Life Cycles," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 6(1), pages 145-181.
    9. Andrew Keisner & Julio Raffo & Sacha Wunsch-Vincent, 2015. "Breakthrough technologies - Robotics, innovation and intellectual property," WIPO Economic Research Working Papers 30, World Intellectual Property Organization - Economics and Statistics Division.
    10. Dauth, Wolfgang & Findeisen, Sebastian & Südekum, Jens & Wößner, Nicole, 2017. "German robots - the impact of industrial robots on workers," IAB-Discussion Paper 201730, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    11. Giuditta De Prato & Montserrat Lopez Cobo & Sofia Samoili & Riccardo Righi & Miguel Vazquez Prada Baillet & Melisande Cardona, 2019. "The AI Techno-Economic Segment Analysis," JRC Research Reports JRC118071, Joint Research Centre.
    12. Südekum, Jens & Dauth, Wolfgang & Findeisen, Sebastian & Woessner, Nicole, 2017. "German Robots – The Impact of Industrial Robots on Workers," CEPR Discussion Papers 12306, C.E.P.R. Discussion Papers.
    13. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2019. "The Economics of Artificial Intelligence: An Agenda," NBER Books, National Bureau of Economic Research, Inc, number agra-1, July.
    14. Daron Acemoglu & Pascual Restrepo, 2017. "Robots and Jobs: Evidence from US Labor Markets," Boston University - Department of Economics - Working Papers Series dp-297, Boston University - Department of Economics.
    15. Takashi Inaba & Mariagrazia Squicciarini, 2017. "ICT: A new taxonomy based on the international patent classification," OECD Science, Technology and Industry Working Papers 2017/1, OECD Publishing.
    16. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    17. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    18. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2017. "Revisiting the risk of automation," Economics Letters, Elsevier, vol. 159(C), pages 157-160.
    19. Van Roy, Vincent & Vértesy, Dániel & Vivarelli, Marco, 2018. "Technology and employment: Mass unemployment or job creation? Empirical evidence from European patenting firms," Research Policy, Elsevier, vol. 47(9), pages 1762-1776.
    20. Agrawal, Ajay & Gans, Joshua & Goldfarb, Avi (ed.), 2019. "The Economics of Artificial Intelligence," National Bureau of Economic Research Books, University of Chicago Press, number 9780226613338, December.
    21. Malerba, Franco & Orsenigo, Luigi, 1996. "Schumpeterian patterns of innovation are technology-specific," Research Policy, Elsevier, vol. 25(3), pages 451-478, May.
    22. repec:bin:bpeajo:v:49:y:2019:i:2018-01:p:1-87 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arenal, Alberto & Armuña, Cristina & Feijoo, Claudio & Ramos, Sergio & Xu, Zimu & Moreno, Ana, 2020. "Innovation ecosystems theory revisited: The case of artificial intelligence in China," Telecommunications Policy, Elsevier, vol. 44(6).
    2. Davide Castellani & Fabio Lamperti & Katiuscia Lavoratori, 2022. "Measuring adoption of industry 4.0 technologies via international trade data: insights from European countries," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 49(1), pages 51-93, March.
    3. Yang, Chih-Hai, 2022. "How Artificial Intelligence Technology Affects Productivity and Employment: Firm-level Evidence from Taiwan," Research Policy, Elsevier, vol. 51(6).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damioli, G. & Van Roy, V. & Vertesy, D. & Vivarelli, M., 2021. "May AI revolution be labour-friendly? Some micro evidence from the supply side," GLO Discussion Paper Series 823, Global Labor Organization (GLO).
    2. Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2021. "Will the AI revolution be labour-friendly? Some micro evidence from the supply side," MERIT Working Papers 2021-016, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    3. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2021. "Detecting the labour-friendly nature of AI product innovation," DISCE - Quaderni del Dipartimento di Politica Economica dipe0017, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    4. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    5. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    6. Fossen, Frank M. & Sorgner, Alina, 2019. "New Digital Technologies and Heterogeneous Employment and Wage Dynamics in the United States: Evidence from Individual-Level Data," IZA Discussion Papers 12242, Institute of Labor Economics (IZA).
    7. Gries, Thomas & Naudé, Wim, 2022. "Modelling artificial intelligence in economics," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 56, pages 1-12.
    8. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy, 2021. "The impact of artificial intelligence on labor productivity," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 11(1), pages 1-25, March.
    9. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    10. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2019. "Digitalization and the Future of Work: Macroeconomic Consequences," IZA Discussion Papers 12428, Institute of Labor Economics (IZA).
    11. Mutascu, Mihai, 2021. "Artificial intelligence and unemployment: New insights," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 653-667.
    12. Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    13. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    14. Sergio De Nardis & Francesca Parente, 2022. "Technology and task changes in the major EU countries," Contemporary Economic Policy, Western Economic Association International, vol. 40(2), pages 391-413, April.
    15. Cirillo, Valeria & Evangelista, Rinaldo & Guarascio, Dario & Sostero, Matteo, 2021. "Digitalization, routineness and employment: An exploration on Italian task-based data," Research Policy, Elsevier, vol. 50(7).
    16. Ben Vermeulen & Jan Kesselhut & Andreas Pyka & Pier Paolo Saviotti, 2018. "The Impact of Automation on Employment: Just the Usual Structural Change?," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    17. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).
    18. Camiña, Ester & Díaz-Chao, Ángel & Torrent-Sellens, Joan, 2020. "Automation technologies: Long-term effects for Spanish industrial firms," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    19. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    20. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.

    More about this item

    Keywords

    Artificial intelligence; innovation; patents; robotics;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:glodps:433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/glabode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.