IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v27y2025i2d10.1007_s10668-023-04001-6.html
   My bibliography  Save this article

Assessing the impact of renewable energy and non-renewable energy use on carbon emissions: evidence from select developing and developed countries

Author

Listed:
  • Pratibha Rai

    (Maharaja Agrasen College, University of Delhi)

  • Priya Gupta

    (Jawaharlal Nehru University)

  • Neha Saini

    (Netaji Subhas University of Technology)

  • Aviral Kumar Tiwari

    (Indian Institute of Management Bodh Gaya (IIM Bodh Gaya))

Abstract

Renewable Energy (RE) is essential for balancing economic and environmental conditions to attain Sustainable Development Goals (SDGs). This paper investigates the relationship between carbon emissions (CO2) and RE use, considering Non-renewable Energy (NRE) and macroeconomic variables such as Foreign Direct Investment, Gross Domestic Product, and Trade in eight major polluting nations from 1990 to 2019, constrained by data idiosyncratic features. The Error Correction Model using Autoregressive Distributed Lag methodology reveals that RE effectively lowers carbon emissions on average, but high economic growth and NRE use significantly contribute to environmental degradation. Additionally, while a reduction in CO2 emissions with RE use is evident through panel data analysis using the random-effect model. However, country-wise and panel data analyses do not substantiate the Environmental Kuznets Curve (EKC) hypothesis. The study confirms a long-run cointegrated relationship among the variables. It highlights the necessity for tailored energy innovations, as the weak validation of the overemphasized EKC hypothesis indicates that a generic solution is only sometimes applicable for mitigating emissions that facilitate the achievement of SDGs. This inquiry contributes to the extant literature by providing a nuanced understanding of the associations amongst macroeconomic variables, renewable and non-renewable energy consumption, and carbon emissions and offers critical insights for policy formulation. The requirement of indispensable energy innovations to achieve SDGs is emphasized. It is necessary to decrease the share of NRE use in total energy consumption and to increase the percentage share of RE use.

Suggested Citation

  • Pratibha Rai & Priya Gupta & Neha Saini & Aviral Kumar Tiwari, 2025. "Assessing the impact of renewable energy and non-renewable energy use on carbon emissions: evidence from select developing and developed countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(2), pages 3059-3080, February.
  • Handle: RePEc:spr:endesu:v:27:y:2025:i:2:d:10.1007_s10668-023-04001-6
    DOI: 10.1007/s10668-023-04001-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-04001-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-04001-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolde-Rufael, Yemane, 2009. "Energy consumption and economic growth: The experience of African countries revisited," Energy Economics, Elsevier, vol. 31(2), pages 217-224.
    2. Shahbaz, Muhammad & Khan, Saleheen & Tahir, Mohammad Iqbal, 2013. "The dynamic links between energy consumption, economic growth, financial development and trade in China: Fresh evidence from multivariate framework analysis," Energy Economics, Elsevier, vol. 40(C), pages 8-21.
    3. Apergis, Nicholas & Tang, Chor Foon, 2013. "Is the energy-led growth hypothesis valid? New evidence from a sample of 85 countries," Energy Economics, Elsevier, vol. 38(C), pages 24-31.
    4. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    5. Paul, Shyamal & Bhattacharya, Rabindra N., 2004. "Causality between energy consumption and economic growth in India: a note on conflicting results," Energy Economics, Elsevier, vol. 26(6), pages 977-983, November.
    6. Goodness C. Aye & Prosper Ebruvwiyo Edoja, 2017. "Effect of economic growth on CO2 emission in developing countries: Evidence from a dynamic panel threshold model," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1379239-137, January.
    7. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    8. Saboori, Behnaz & Sulaiman, Jamalludin, 2013. "CO2 emissions, energy consumption and economic growth in Association of Southeast Asian Nations (ASEAN) countries: A cointegration approach," Energy, Elsevier, vol. 55(C), pages 813-822.
    9. Álvarez-Herránz, Agustín & Balsalobre, Daniel & Cantos, José María & Shahbaz, Muhammad, 2017. "Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries," Energy Policy, Elsevier, vol. 101(C), pages 90-100.
    10. Gazi A. Uddin & Khorshed Alam & Jeff Gow, 2016. "Does Ecological Footprint Impede Economic Growth? An Empirical Analysis Based on the Environmental Kuznets Curve Hypothesis," Australian Economic Papers, Wiley Blackwell, vol. 55(3), pages 301-316, September.
    11. Holtz-Eakin, Douglas & Selden, Thomas M., 1995. "Stoking the fires? CO2 emissions and economic growth," Journal of Public Economics, Elsevier, vol. 57(1), pages 85-101, May.
    12. James E. Payne, 2010. "Survey of the international evidence on the causal relationship between energy consumption and growth," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 37(1), pages 53-95, January.
    13. Asafu-Adjaye, John, 2000. "The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries," Energy Economics, Elsevier, vol. 22(6), pages 615-625, December.
    14. Wang, Zhijian & Ben Jebli, Mehdi & Madaleno, Mara & Doğan, Buhari & Shahzad, Umer, 2021. "Does export product quality and renewable energy induce carbon dioxide emissions: Evidence from leading complex and renewable energy economies," Renewable Energy, Elsevier, vol. 171(C), pages 360-370.
    15. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    16. Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2021. "Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: application of wavelet tools," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16057-16082, November.
    17. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    18. Nguyen, Kim Hanh & Kakinaka, Makoto, 2019. "Renewable energy consumption, carbon emissions, and development stages: Some evidence from panel cointegration analysis," Renewable Energy, Elsevier, vol. 132(C), pages 1049-1057.
    19. Ang, James B., 2007. "CO2 emissions, energy consumption, and output in France," Energy Policy, Elsevier, vol. 35(10), pages 4772-4778, October.
    20. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    21. Lotfalipour, Mohammad Reza & Falahi, Mohammad Ali & Ashena, Malihe, 2010. "Economic growth, CO2 emissions, and fossil fuels consumption in Iran," Energy, Elsevier, vol. 35(12), pages 5115-5120.
    22. Singhania, Monica & Saini, Neha, 2021. "Demystifying pollution haven hypothesis: Role of FDI," Journal of Business Research, Elsevier, vol. 123(C), pages 516-528.
    23. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    24. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    25. Jingling Chen & Tao Eric Hu & Rob van Tulder, 2019. "Is the Environmental Kuznets Curve Still Valid: A Perspective of Wicked Problems," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    26. Hanif, Imran & Faraz Raza, Syed Muhammad & Gago-de-Santos, Pilar & Abbas, Qaiser, 2019. "Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: Some empirical evidence," Energy, Elsevier, vol. 171(C), pages 493-501.
    27. Tang, Chor Foon & Tan, Eu Chye, 2013. "Exploring the nexus of electricity consumption, economic growth, energy prices and technology innovation in Malaysia," Applied Energy, Elsevier, vol. 104(C), pages 297-305.
    28. Boutabba, Mohamed Amine, 2014. "The impact of financial development, income, energy and trade on carbon emissions: Evidence from the Indian economy," Economic Modelling, Elsevier, vol. 40(C), pages 33-41.
    29. Shafik, Nemat, 1994. "Economic Development and Environmental Quality: An Econometric Analysis," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 757-773, Supplemen.
    30. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions," Renewable Energy, Elsevier, vol. 167(C), pages 99-115.
    31. Anindya Banerjee & Juan Dolado & Ricardo Mestre, 1998. "Error‐correction Mechanism Tests for Cointegration in a Single‐equation Framework," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(3), pages 267-283, May.
    32. Wolde-Rufael, Yemane, 2005. "Energy demand and economic growth: The African experience," Journal of Policy Modeling, Elsevier, vol. 27(8), pages 891-903, November.
    33. Kremers, Jeroen J M & Ericsson, Neil R & Dolado, Juan J, 1992. "The Power of Cointegration Tests," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 325-348, August.
    34. Apergis, Nicholas & Payne, James E., 2010. "Renewable energy consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(1), pages 656-660, January.
    35. Eskeland, Gunnar S. & Harrison, Ann E., 2003. "Moving to greener pastures? Multinationals and the pollution haven hypothesis," Journal of Development Economics, Elsevier, vol. 70(1), pages 1-23, February.
    36. Cole, Matthew A. & Elliott, Robert J.R. & Strobl, Eric, 2008. "The environmental performance of firms: The role of foreign ownership, training, and experience," Ecological Economics, Elsevier, vol. 65(3), pages 538-546, April.
    37. Apergis, Nicholas & Ben Jebli, Mehdi & Ben Youssef, Slim, 2018. "Does renewable energy consumption and health expenditures decrease carbon dioxide emissions? Evidence for sub-Saharan Africa countries," Renewable Energy, Elsevier, vol. 127(C), pages 1011-1016.
    38. Mohamed Amine Boutabba, 2014. "The impact of financial development, income, energy and trade on carbon emissions: Evidence from the Indian economy," Post-Print hal-02877966, HAL.
    39. Özgür Bayram Soylu & Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2021. "The Imperativeness of Environmental Quality in China Amidst Renewable Energy Consumption and Trade Openness," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    40. Bölük, Gülden & Mert, Mehmet, 2014. "Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries," Energy, Elsevier, vol. 74(C), pages 439-446.
    41. Khan, Zeeshan & Ali, Muhsin & Jinyu, Liu & Shahbaz, Muhammad & Siqun, Yang, 2020. "Consumption-based carbon emissions and trade nexus: Evidence from nine oil exporting countries," Energy Economics, Elsevier, vol. 89(C).
    42. Baranzini, Andrea & Weber, Sylvain & Bareit, Markus & Mathys, Nicole A., 2013. "The causal relationship between energy use and economic growth in Switzerland," Energy Economics, Elsevier, vol. 36(C), pages 464-470.
    43. Huajun Liu & Mingyu Lei & Naixin Zhang & Guangjie Du, 2019. "The causal nexus between energy consumption, carbon emissions and economic growth: New evidence from China, India and G7 countries using convergent cross mapping," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-18, May.
    44. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.
    45. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    2. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    3. Omri, Anis & Daly, Saida & Rault, Christophe & Chaibi, Anissa, 2015. "Financial development, environmental quality, trade and economic growth: What causes what in MENA countries," Energy Economics, Elsevier, vol. 48(C), pages 242-252.
    4. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    5. Saboori, Behnaz & Sulaiman, Jamalludin, 2013. "Environmental degradation, economic growth and energy consumption: Evidence of the environmental Kuznets curve in Malaysia," Energy Policy, Elsevier, vol. 60(C), pages 892-905.
    6. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    7. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    8. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    9. Sanu, Md Sahnewaz, 2019. "Re-examining the Environmental Kuznets Curve Hypothesis in India: The Role of Coal Consumption, Financial Development and Trade Openness," MPRA Paper 107845, University Library of Munich, Germany, revised Dec 2019.
    10. Jaruwan Chontanawat, 2020. "Dynamic Modelling of Causal Relationship between Energy Consumption, CO 2 Emission, and Economic Growth in SE Asian Countries," Energies, MDPI, vol. 13(24), pages 1-27, December.
    11. Yilmaz Bayar & Laura Diaconu (Maxim) & Andrei Maxim, 2020. "Financial Development and CO 2 Emissions in Post-Transition European Union Countries," Sustainability, MDPI, vol. 12(7), pages 1-15, March.
    12. Omri, Anis, 2013. "CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models," Energy Economics, Elsevier, vol. 40(C), pages 657-664.
    13. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    14. Eyup Dogan & Nigar Taspinar & Korhan K Gokmenoglu, 2019. "Determinants of ecological footprint in MINT countries," Energy & Environment, , vol. 30(6), pages 1065-1086, September.
    15. Chen, Wenhui & Lei, Yalin, 2018. "The impacts of renewable energy and technological innovation on environment-energy-growth nexus: New evidence from a panel quantile regression," Renewable Energy, Elsevier, vol. 123(C), pages 1-14.
    16. Ahmad, Ashfaq & Zhao, Yuhuan & Shahbaz, Muhammad & Bano, Sadia & Zhang, Zhonghua & Wang, Song & Liu, Ya, 2016. "Carbon emissions, energy consumption and economic growth: An aggregate and disaggregate analysis of the Indian economy," Energy Policy, Elsevier, vol. 96(C), pages 131-143.
    17. Shahbaz, Muhammad & Rasool, Ghulam & Ahmed, Khalid & Mahalik, Mantu Kumar, 2016. "Considering the effect of biomass energy consumption on economic growth: Fresh evidence from BRICS region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1442-1450.
    18. Stephan B. Bruns, Christian Gross and David I. Stern, 2014. "Is There Really Granger Causality Between Energy Use and Output?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    19. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    20. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.

    More about this item

    Keywords

    EKC hypothesis; Renewable and sustainable energy; CO2 emissions; GDP; Economic indicators;
    All these keywords.

    JEL classification:

    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:27:y:2025:i:2:d:10.1007_s10668-023-04001-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.