IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v51y2022i1p165-202.html
   My bibliography  Save this article

The Mechanics of Treatment-effect Estimate Bias for Nonexperimental Data

Author

Listed:
  • Roberto V. Penaloza
  • Mark Berends

Abstract

To measure “treatment†effects, social science researchers typically rely on nonexperimental data. In education, school and teacher effects on students are often measured through value-added models (VAMs) that are not fully understood. We propose a framework that relates to the education production function in its most flexible form and connects with the basic VAMs without using untenable assumptions. We illustrate how, due to measurement error (ME), cross-group imbalances created by nonrandom group assignment cause correlations that drive the models’ treatment-effect estimate bias. We derive formulas to calculate bias and rank the models and show that no model is better in all situations. The framework and formulas’ workings are verified and illustrated via simulation. We also evaluate the performance of latent variable/errors-in-variables models that handle ME and study the role of extra covariates including lags of the outcome.

Suggested Citation

  • Roberto V. Penaloza & Mark Berends, 2022. "The Mechanics of Treatment-effect Estimate Bias for Nonexperimental Data," Sociological Methods & Research, , vol. 51(1), pages 165-202, February.
  • Handle: RePEc:sae:somere:v:51:y:2022:i:1:p:165-202
    DOI: 10.1177/0049124119852375
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124119852375
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124119852375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jesse Rothstein, 2010. "Teacher Quality in Educational Production: Tracking, Decay, and Student Achievement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(1), pages 175-214.
    2. Tahir Andrabi & Jishnu Das & Asim Ijaz Khwaja & Tristan Zajonc, 2011. "Do Value-Added Estimates Add Value? Accounting for Learning Dynamics," American Economic Journal: Applied Economics, American Economic Association, vol. 3(3), pages 29-54, July.
    3. Petra E. Todd & Kenneth I. Wolpin, 2007. "The Production of Cognitive Achievement in Children: Home, School, and Racial Test Score Gaps," Journal of Human Capital, University of Chicago Press, vol. 1(1), pages 91-136.
    4. Thomas J. Kane & Douglas O. Staiger, 2008. "Estimating Teacher Impacts on Student Achievement: An Experimental Evaluation," NBER Working Papers 14607, National Bureau of Economic Research, Inc.
    5. Steven Dieterle & Cassandra M. Guarino & Mark D. Reckase & Jeffrey M. Wooldridge, 2015. "How do Principals Assign Students to Teachers? Finding Evidence in Administrative Data and the Implications for Value Added," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 34(1), pages 32-58, January.
    6. Cory Koedel & Julian Betts, 2010. "Value Added to What? How a Ceiling in the Testing Instrument Influences Value-Added Estimation," Education Finance and Policy, MIT Press, vol. 5(1), pages 54-81, January.
    7. Jesse Rothstein, 2009. "Student Sorting and Bias in Value-Added Estimation: Selection on Observables and Unobservables," Education Finance and Policy, MIT Press, vol. 4(4), pages 537-571, October.
    8. Daniel Aaronson & Lisa Barrow & William Sander, 2007. "Teachers and Student Achievement in the Chicago Public High Schools," Journal of Labor Economics, University of Chicago Press, vol. 25(1), pages 95-135.
    9. Koedel, Cory & Mihaly, Kata & Rockoff, Jonah E., 2015. "Value-added modeling: A review," Economics of Education Review, Elsevier, vol. 47(C), pages 180-195.
    10. Raj Chetty & John N. Friedman & Jonah E. Rockoff, 2014. "Measuring the Impacts of Teachers I: Evaluating Bias in Teacher Value-Added Estimates," American Economic Review, American Economic Association, vol. 104(9), pages 2593-2632, September.
    11. Elias Walsh & Eric Isenberg, 2013. "How Does a Value-Added Model Compare to the Colorado Growth Model?," Mathematica Policy Research Reports e703eea3252e43d39fee791e5, Mathematica Policy Research.
    12. Eric Isenberg & Elias Walsh, 2014. "Measuring Teacher Value Added in DC, 2012-2013 School Year," Mathematica Policy Research Reports b319ed849495477791cef8b8c, Mathematica Policy Research.
    13. Alexandra Resch & Eric Isenberg, "undated". "How Do Test Scores at the Floor and Ceiling Affect Value-Added Estimates?," Mathematica Policy Research Reports 80fbbeb5dd504dbab6c51e4d8, Mathematica Policy Research.
    14. repec:mpr:mprres:7949 is not listed on IDEAS
    15. Koedel Cory & Leatherman Rebecca & Parsons Eric, 2012. "Test Measurement Error and Inference from Value-Added Models," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 12(1), pages 1-37, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koedel, Cory & Mihaly, Kata & Rockoff, Jonah E., 2015. "Value-added modeling: A review," Economics of Education Review, Elsevier, vol. 47(C), pages 180-195.
    2. Eric Parsons & Cory Koedel & Li Tan, 2019. "Accounting for Student Disadvantage in Value-Added Models," Journal of Educational and Behavioral Statistics, , vol. 44(2), pages 144-179, April.
    3. Canales, Andrea & Maldonado, Luis, 2018. "Teacher quality and student achievement in Chile: Linking teachers' contribution and observable characteristics," International Journal of Educational Development, Elsevier, vol. 60(C), pages 33-50.
    4. Hermann, Zoltán & Horváth, Hedvig, 2022. "Tanári eredményesség és tanár-diák összepárosítás az általános iskolákban. Empirikus mintázatok három magyarországi tankerület adatai alapján [Teacher effectiveness and teacher-student matching in ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1377-1406.
    5. Gershenson, Seth, 2021. "Identifying and Producing Effective Teachers," IZA Discussion Papers 14096, Institute of Labor Economics (IZA).
    6. Backes, Ben & Cowan, James & Goldhaber, Dan & Koedel, Cory & Miller, Luke C. & Xu, Zeyu, 2018. "The common core conundrum: To what extent should we worry that changes to assessments will affect test-based measures of teacher performance?," Economics of Education Review, Elsevier, vol. 62(C), pages 48-65.
    7. Kasper Brandt, 2018. "Private beats public: A flexible value-added model with Tanzanian school switchers," WIDER Working Paper Series 81, World Institute for Development Economic Research (UNU-WIDER).
    8. Koedel Cory & Leatherman Rebecca & Parsons Eric, 2012. "Test Measurement Error and Inference from Value-Added Models," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 12(1), pages 1-37, November.
    9. Goldhaber, Dan & Krieg, John & Theobald, Roddy, 2020. "Effective like me? Does having a more productive mentor improve the productivity of mentees?," Labour Economics, Elsevier, vol. 63(C).
    10. Marta De Philippis, 2021. "Multi-Task Agents and Incentives: The Case of Teaching and Research for University Professors," The Economic Journal, Royal Economic Society, vol. 131(636), pages 1643-1681.
    11. Hanushek, Eric A. & Rivkin, Steven G. & Schiman, Jeffrey C., 2016. "Dynamic effects of teacher turnover on the quality of instruction," Economics of Education Review, Elsevier, vol. 55(C), pages 132-148.
    12. Figlio, D. & Karbownik, K. & Salvanes, K.G., 2016. "Education Research and Administrative Data," Handbook of the Economics of Education,, Elsevier.
    13. Dan Goldhaber & Michael Hansen, 2013. "Is it Just a Bad Class? Assessing the Long-term Stability of Estimated Teacher Performance," Economica, London School of Economics and Political Science, vol. 80(319), pages 589-612, July.
    14. David Blazar, 2018. "Validating Teacher Effects on Students’ Attitudes and Behaviors: Evidence from Random Assignment of Teachers to Students," Education Finance and Policy, MIT Press, vol. 13(3), pages 281-309, Summer.
    15. Cassandra M. Guarino & Mark D. Reckase & Jeffrey M. Woolrdige, 2014. "Can Value-Added Measures of Teacher Performance Be Trusted?," Education Finance and Policy, MIT Press, vol. 10(1), pages 117-156, November.
    16. Goldhaber, Dan & Cowan, James & Walch, Joe, 2013. "Is a good elementary teacher always good? Assessing teacher performance estimates across subjects," Economics of Education Review, Elsevier, vol. 36(C), pages 216-228.
    17. Godstime Osekhebhen Eigbiremolen, 2020. "Estimating Private School Premium for Primary School Children in Ethiopia: Evidence from Individual-level Panel Data," Progress in Development Studies, , vol. 20(1), pages 26-44, January.
    18. Dana Rotz & Matthew Johnson & Brian Gill, "undated". "Value-Added Models for the Pittsburgh Public Schools, 2012-13 School Year," Mathematica Policy Research Reports 11cf6795ac3842b996637b08e, Mathematica Policy Research.
    19. Nirav Mehta, 2014. "Targeting the Wrong Teachers: Estimating Teacher Quality for Use in Accountability Regimes," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20143, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
    20. repec:mpr:mprres:6941 is not listed on IDEAS
    21. Stephen Lipscomb & Bing-ru Teh & Brian Gill & Hanley Chiang & Antoniya Owens, "undated". "Teacher and Principal Value-Added: Research Findings and Implementation Practices," Mathematica Policy Research Reports b024faae6179407da5b887263, Mathematica Policy Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:51:y:2022:i:1:p:165-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.