IDEAS home Printed from https://ideas.repec.org/p/umc/wpaper/1201.html
   My bibliography  Save this paper

Test Measurement Error and Inference from Value-Added Models

Author

Abstract

It is widely known that standardized tests are noisy measures of student learning, but value added models (VAMs) rarely take direct account of measurement error in student test scores. We examine the extent to which modifying VAMs to include information about test measurement error (TME) can improve inference. Our analysis is divided into two parts – one based on simulated data and the other based on administrative micro data from Missouri. In the simulations we control the data generating process, which ensures that we obtain accurate TME metrics with which to modify our value-added models. In the real-data portion of our analysis we use estimates of TME provided by a major test publisher. We find that inference from VAMs is improved by making simple TME adjustments to the models. This is a notable result because the improvement can be had at zero cost.

Suggested Citation

  • Cory Koedel & Rebecca Leatherman & Eric Parsons, 2012. "Test Measurement Error and Inference from Value-Added Models," Working Papers 1201, Department of Economics, University of Missouri.
  • Handle: RePEc:umc:wpaper:1201
    as

    Download full text from publisher

    File URL: https://drive.google.com/file/d/1cgWiz1NPI0wiiQogcLsSH-02FezgDu-S/view?usp=sharing
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jesse Rothstein, 2010. "Teacher Quality in Educational Production: Tracking, Decay, and Student Achievement," The Quarterly Journal of Economics, Oxford University Press, vol. 125(1), pages 175-214.
    2. Tahir Andrabi & Jishnu Das & Asim Ijaz Khwaja & Tristan Zajonc, 2011. "Do Value-Added Estimates Add Value? Accounting for Learning Dynamics," American Economic Journal: Applied Economics, American Economic Association, vol. 3(3), pages 29-54, July.
    3. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    4. Heather C. Hill, 2009. "Evaluating value-added models: A validity argument approach," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 28(4), pages 700-709.
    5. Thomas J. Kane & Douglas O. Staiger, 2008. "Estimating Teacher Impacts on Student Achievement: An Experimental Evaluation," NBER Working Papers 14607, National Bureau of Economic Research, Inc.
    6. Thomas J. Kane & Douglas O. Staiger, 2002. "The Promise and Pitfalls of Using Imprecise School Accountability Measures," Journal of Economic Perspectives, American Economic Association, vol. 16(4), pages 91-114, Fall.
    7. Jesse Rothstein, 2009. "Student Sorting and Bias in Value-Added Estimation: Selection on Observables and Unobservables," Education Finance and Policy, MIT Press, vol. 4(4), pages 537-571, October.
    8. Eric Isenberg & Heinrich Hock, 2010. "Measuring School and Teacher Value Added for IMPACT and TEAM in DC Public Schools," Mathematica Policy Research Reports 42dd1ff2d7eb46948f98d8e9c, Mathematica Policy Research.
    9. Sass, Tim R. & Semykina, Anastasia & Harris, Douglas N., 2014. "Value-added models and the measurement of teacher productivity," Economics of Education Review, Elsevier, vol. 38(C), pages 9-23.
    10. Daniel Aaronson & Lisa Barrow & William Sander, 2007. "Teachers and Student Achievement in the Chicago Public High Schools," Journal of Labor Economics, University of Chicago Press, vol. 25(1), pages 95-135.
    11. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
    12. Gadi Barlevy & Derek Neal, 2012. "Pay for Percentile," American Economic Review, American Economic Association, vol. 102(5), pages 1805-1831, August.
    13. Kane, Thomas J. & Rockoff, Jonah E. & Staiger, Douglas O., 2008. "What does certification tell us about teacher effectiveness? Evidence from New York City," Economics of Education Review, Elsevier, vol. 27(6), pages 615-631, December.
    14. Peter Z. Schochet & Hanley S. Chiang, "undated". "What Are Error Rates for Classifying Teacher and School Performance Using Value-Added Models?," Mathematica Policy Research Reports 8cc459dd9c574c3d832ed4182, Mathematica Policy Research.
    15. Petra E. Todd & Kenneth I. Wolpin, 2003. "On The Specification and Estimation of The Production Function for Cognitive Achievement," Economic Journal, Royal Economic Society, vol. 113(485), pages 3-33, February.
    16. Dan Goldhaber & Duncan Dunbar Chaplin, "undated". "Assessing the "Rothstein Falsification Test": Does It Really Show Teacher Value-Added Models Are Biased?," Mathematica Policy Research Reports 93f34c834817419a9efccecdf, Mathematica Policy Research.
    17. Raj Chetty & John N. Friedman & Jonah E. Rockoff, 2011. "The Long-Term Impacts of Teachers: Teacher Value-Added and Student Outcomes in Adulthood," NBER Working Papers 17699, National Bureau of Economic Research, Inc.
    18. Pischke, Jorn-Steffen, 1995. "Measurement Error and Earnings Dynamics: Some Estimates from the PSID Validation Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 305-314, July.
    19. Dale Ballou, 2009. "Test Scaling and Value-Added Measurement," Education Finance and Policy, MIT Press, vol. 4(4), pages 351-383, October.
    20. Cory Koedel & Julian R. Betts, 2011. "Does Student Sorting Invalidate Value-Added Models of Teacher Effectiveness? An Extended Analysis of the Rothstein Critique," Education Finance and Policy, MIT Press, vol. 6(1), pages 18-42, January.
    21. Jonah E. Rockoff, 2004. "The Impact of Individual Teachers on Student Achievement: Evidence from Panel Data," American Economic Review, American Economic Association, vol. 94(2), pages 247-252, May.
    22. Douglas O. Staiger & Jonah E. Rockoff, 2010. "Searching for Effective Teachers with Imperfect Information," Journal of Economic Perspectives, American Economic Association, vol. 24(3), pages 97-118, Summer.
    23. Eric A. Hanushek & Steven G. Rivkin, 2010. "Generalizations about Using Value-Added Measures of Teacher Quality," American Economic Review, American Economic Association, vol. 100(2), pages 267-271, May.
    24. repec:mpr:mprres:7019 is not listed on IDEAS
    25. Charles T. Clotfelter & Helen F. Ladd & Jacob L. Vigdor, 2006. "Teacher-Student Matching and the Assessment of Teacher Effectiveness," Journal of Human Resources, University of Wisconsin Press, vol. 41(4).
    26. J.R. Lockwood & Thomas A. Louis & Daniel F. McCaffrey, 2002. "Uncertainty in Rank Estimation: Implications for Value-Added Modeling Accountability Systems," Journal of Educational and Behavioral Statistics, , vol. 27(3), pages 255-270, September.
    27. Donald Boyd & Hamilton Lankford & Susanna Loeb & James Wyckoff, 2011. "Teacher Layoffs: An Empirical Illustration of Seniority versus Measures of Effectiveness," Education Finance and Policy, MIT Press, vol. 6(3), pages 439-454, July.
    28. Michael J. Podgursky & Matthew G. Springer, 2007. "Teacher performance pay: A review," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 26(4), pages 909-950.
    29. Dan Goldhaber & Michael Hansen, 2010. "Using Performance on the Job to Inform Teacher Tenure Decisions," American Economic Review, American Economic Association, vol. 100(2), pages 250-255, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dionissi Aliprantis, 2014. "When Should Children Start School?," Journal of Human Capital, University of Chicago Press, vol. 8(4), pages 481-536.
    2. Chun Wang & Gongjun Xu & Xue Zhang, 2019. "Correction for Item Response Theory Latent Trait Measurement Error in Linear Mixed Effects Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 673-700, September.
    3. Cory Koedel & Jiaxi Li, 2016. "The Efficiency Implications Of Using Proportional Evaluations To Shape The Teaching Workforce," Contemporary Economic Policy, Western Economic Association International, vol. 34(1), pages 47-62, January.
    4. Matthew Johnson & Stephen Lipscomb & Brian Gill, 2013. "Sensitivity of Teacher Value-Added Estimates to Student and Peer Control Variables," Mathematica Policy Research Reports 3f875df699534c72b9e57c39d, Mathematica Policy Research.
    5. Cory Koedel & Mark Ehlert & Eric Parsons & Michael Podgursky, 2012. "Selecting Growth Measures for School and Teacher Evaluations," Working Papers 1210, Department of Economics, University of Missouri.
    6. repec:mpr:mprres:7748 is not listed on IDEAS
    7. Cory Koedel & Eric Parsons & Michael Podgursky & Mark Ehlert, 2015. "Teacher Preparation Programs and Teacher Quality: Are There Real Differences Across Programs?," Education Finance and Policy, MIT Press, vol. 10(4), pages 508-534, October.
    8. Eric Parsons & Cory Koedel & Li Tan, 2019. "Accounting for Student Disadvantage in Value-Added Models," Journal of Educational and Behavioral Statistics, , vol. 44(2), pages 144-179, April.
    9. Steven Dieterle & Cassandra M. Guarino & Mark D. Reckase & Jeffrey M. Wooldridge, 2015. "How do Principals Assign Students to Teachers? Finding Evidence in Administrative Data and the Implications for Value Added," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 34(1), pages 32-58, January.
    10. Roberto V. Penaloza & Mark Berends, 2022. "The Mechanics of Treatment-effect Estimate Bias for Nonexperimental Data," Sociological Methods & Research, , vol. 51(1), pages 165-202, February.
    11. repec:mpr:mprres:7941 is not listed on IDEAS
    12. Koedel, Cory & Mihaly, Kata & Rockoff, Jonah E., 2015. "Value-added modeling: A review," Economics of Education Review, Elsevier, vol. 47(C), pages 180-195.
    13. Mariesa Herrmann & Elias Walsh & Eric Isenberg & Alexandra Resch, 2013. "Shrinkage of Value-Added Estimates and Characteristics of Students with Hard-to-Predict Achievement Levels," Mathematica Policy Research Reports 2b140369be0242ac83eeb5b0a, Mathematica Policy Research.
    14. J. R. Lockwood & Daniel F. McCaffrey, 2014. "Correcting for Test Score Measurement Error in ANCOVA Models for Estimating Treatment Effects," Journal of Educational and Behavioral Statistics, , vol. 39(1), pages 22-52, February.
    15. Backes, Ben & Cowan, James & Goldhaber, Dan & Koedel, Cory & Miller, Luke C. & Xu, Zeyu, 2018. "The common core conundrum: To what extent should we worry that changes to assessments will affect test-based measures of teacher performance?," Economics of Education Review, Elsevier, vol. 62(C), pages 48-65.
    16. repec:umc:wpaper:1308 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koedel, Cory & Mihaly, Kata & Rockoff, Jonah E., 2015. "Value-added modeling: A review," Economics of Education Review, Elsevier, vol. 47(C), pages 180-195.
    2. Cory Koedel & Mark Ehlert & Eric Parsons & Michael Podgursky, 2012. "Selecting Growth Measures for School and Teacher Evaluations," Working Papers 1210, Department of Economics, University of Missouri.
    3. Dan Goldhaber & Michael Hansen, 2013. "Is it Just a Bad Class? Assessing the Long-term Stability of Estimated Teacher Performance," Economica, London School of Economics and Political Science, vol. 80(319), pages 589-612, July.
    4. Nirav Mehta, 2019. "Measuring quality for use in incentive schemes: The case of “shrinkage” estimators," Quantitative Economics, Econometric Society, vol. 10(4), pages 1537-1577, November.
    5. Marine de Talancé, 2015. "Better Teachers, Better Results? Evidence from Rural Pakistan," Working Papers DT/2015/21, DIAL (Développement, Institutions et Mondialisation).
    6. Allison Atteberry & Susanna Loeb & James Wyckoff, 2013. "Do First Impressions Matter? Improvement in Early Career Teacher Effectiveness," NBER Working Papers 19096, National Bureau of Economic Research, Inc.
    7. Jonah E. Rockoff & Douglas O. Staiger & Thomas J. Kane & Eric S. Taylor, 2012. "Information and Employee Evaluation: Evidence from a Randomized Intervention in Public Schools," American Economic Review, American Economic Association, vol. 102(7), pages 3184-3213, December.
    8. Azam, Mehtabul & Kingdon, Geeta Gandhi, 2015. "Assessing teacher quality in India," Journal of Development Economics, Elsevier, vol. 117(C), pages 74-83.
    9. Hanushek, Eric A. & Rivkin, Steven G. & Schiman, Jeffrey C., 2016. "Dynamic effects of teacher turnover on the quality of instruction," Economics of Education Review, Elsevier, vol. 55(C), pages 132-148.
    10. Goldhaber, Dan & Cowan, James & Walch, Joe, 2013. "Is a good elementary teacher always good? Assessing teacher performance estimates across subjects," Economics of Education Review, Elsevier, vol. 36(C), pages 216-228.
    11. Peter Z. Schochet & Hanley S. Chiang, 2013. "What Are Error Rates for Classifying Teacher and School Performance Using Value-Added Models?," Journal of Educational and Behavioral Statistics, , vol. 38(2), pages 142-171, April.
    12. Nirav Mehta, 2014. "Targeting the Wrong Teachers: Estimating Teacher Quality for Use in Accountability Regimes," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20143, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
    13. Harris, Douglas N. & Sass, Tim R., 2014. "Skills, productivity and the evaluation of teacher performance," Economics of Education Review, Elsevier, vol. 40(C), pages 183-204.
    14. Stacy, Brian & Guarino, Cassandra & Wooldridge, Jeffrey, 2018. "Does the precision and stability of value-added estimates of teacher performance depend on the types of students they serve?," Economics of Education Review, Elsevier, vol. 64(C), pages 50-74.
    15. Cory Koedel & Jiaxi Li, 2016. "The Efficiency Implications Of Using Proportional Evaluations To Shape The Teaching Workforce," Contemporary Economic Policy, Western Economic Association International, vol. 34(1), pages 47-62, January.
    16. Jesse Rothstein, 2010. "Teacher Quality in Educational Production: Tracking, Decay, and Student Achievement," The Quarterly Journal of Economics, Oxford University Press, vol. 125(1), pages 175-214.
    17. Nirav Mehta, 2019. "Measuring quality for use in incentive schemes: The case of “shrinkage” estimators," Quantitative Economics, Econometric Society, vol. 10(4), pages 1537-1577, November.
    18. Hanushek, Eric A., 2011. "The economic value of higher teacher quality," Economics of Education Review, Elsevier, vol. 30(3), pages 466-479, June.
    19. Sean Corcoran & Dan Goldhaber, 2013. "Value Added and Its Uses: Where You Stand Depends on Where You Sit," Education Finance and Policy, MIT Press, vol. 8(3), pages 418-434, July.
    20. Douglas O. Staiger & Jonah E. Rockoff, 2010. "Searching for Effective Teachers with Imperfect Information," Journal of Economic Perspectives, American Economic Association, vol. 24(3), pages 97-118, Summer.

    More about this item

    Keywords

    value added models; value added; teacher value added; test measurement error; teacher evaluation;
    All these keywords.

    JEL classification:

    • I20 - Health, Education, and Welfare - - Education - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:umc:wpaper:1201. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/edumous.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chao Gu (email available below). General contact details of provider: https://edirc.repec.org/data/edumous.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.