IDEAS home Printed from https://ideas.repec.org/a/sae/revdev/v28y2023i2p166-188.html
   My bibliography  Save this article

Crop Diversity and Resilience to Droughts: Evidence from Indian Agriculture

Author

Listed:
  • Anubhab Pattanayak
  • Madhumitha Srinivasan
  • K. S. Kavi Kumar

Abstract

In India, agricultural intensification and technological specialisation have led to the prevalence of monoculture. Diversity within crop species has been gradually declining since the advent of the Green Revolution in the 1960s. Increasingly frequent weather shocks induce agrarian stress, thus creating a need for robust adaptation responses. Using district-level agricultural data for the period between 1966 and 2015, this article aims to assess whether crop diversification can cushion yield losses due to droughts. The results of this study indicate that diversification enhanced resilience against droughts during the Green Revolution period. However, post-Green Revolution, specialisation seems to have helped mitigate the adverse effects of rainfall deficit. In the absence of weather extremes, monoculture is found to be more lucrative due to both supply- and demand-side factors such as improved inputs, irrigation and infrastructure facilities, government’s support prices and consumption demand patterns. Crop diversification is identified as a potential adaptation strategy against certain types of weather extremes. However, in some cases, crop diversification alone is inadequate in enhancing the drought resilience of the cropping system in India. To ensure drought resilience, combining crop diversification with other measures such as enhancing irrigation and agricultural diversification needs to be considered.

Suggested Citation

  • Anubhab Pattanayak & Madhumitha Srinivasan & K. S. Kavi Kumar, 2023. "Crop Diversity and Resilience to Droughts: Evidence from Indian Agriculture," Review of Development and Change, , vol. 28(2), pages 166-188, December.
  • Handle: RePEc:sae:revdev:v:28:y:2023:i:2:p:166-188
    DOI: 10.1177/09722661231215450
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/09722661231215450
    Download Restriction: no

    File URL: https://libkey.io/10.1177/09722661231215450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Douglas Gollin & Casper Worm Hansen & Asger Mose Wingender, 2021. "Two Blades of Grass: The Impact of the Green Revolution," Journal of Political Economy, University of Chicago Press, vol. 129(8), pages 2344-2384.
    2. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    3. Rahman, Sanzidur, 2009. "Whether crop diversification is a desired strategy for agricultural growth in Bangladesh?," Food Policy, Elsevier, vol. 34(4), pages 340-349, August.
    4. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    5. Delphine Renard & David Tilman, 2019. "National food production stabilized by crop diversity," Nature, Nature, vol. 571(7764), pages 257-260, July.
    6. Peter J. Jacques & Jessica Racine Jacques, 2012. "Monocropping Cultures into Ruin: The Loss of Food Varieties and Cultural Diversity," Sustainability, MDPI, vol. 4(11), pages 1-28, November.
    7. Benjamin Davis & Gero Carletto & Paul Winters, 2010. "Migration, Transfers and Economic Decision Making among Agricultural Households: an Introduction," Journal of Development Studies, Taylor & Francis Journals, vol. 46(1), pages 1-13.
    8. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    9. Tilman, David & Polasky, Stephen & Lehman, Clarence, 2005. "Diversity, productivity and temporal stability in the economies of humans and nature," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 405-426, May.
    10. K. S. Kavi Kumar, 2021. "Rice Production Systems and Drought Resilience in India," India Studies in Business and Economics, in: Purnamita Dasgupta & Anindita Roy Saha & Robin Singhal (ed.), Sustainable Development Insights from India, pages 303-316, Springer.
    11. Floros, Ch., 2005. "Forecasting the UK Unemployment Rate: Model Comparisons," International Journal of Applied Econometrics and Quantitative Studies, Euro-American Association of Economic Development, vol. 2(4), pages 57-72.
    12. Jean‐Paul Chavas & Salvatore Di Falco, 2012. "On the Role of Risk Versus Economies of Scope in Farm Diversification With an Application to Ethiopian Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(1), pages 25-55, February.
    13. Laura Brown & Saeed Moshiri, 2004. "Unemployment variation over the business cycles: a comparison of forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 497-511.
    14. Willa W. Chen & Rohit S. Deo, 2004. "Power transformations to induce normality and their applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 117-130, February.
    15. Salvatore Di Falco, 2012. "On the Value of Agricultural Biodiversity," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 207-223, August.
    16. Taraz, Vis, 2017. "Adaptation to climate change: historical evidence from the Indian monsoon," Environment and Development Economics, Cambridge University Press, vol. 22(5), pages 517-545, October.
    17. Pingali, Prabhu L. & Rosegrant, Mark W., 1995. "Agricultural commercialization and diversification: processes and policies," Food Policy, Elsevier, vol. 20(3), pages 171-185, June.
    18. Frederick H. Buttel & Randolph Barker, 1985. "Emerging Agricultural Technologies, Public Policy, and Implications for Third World Agriculture: The Case of Biotechnology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(5), pages 1170-1175.
    19. Salvatore Di Falco & Jean-Paul Chavas, 2008. "Rainfall Shocks, Resilience, and the Effects of Crop Biodiversity on Agroecosystem Productivity," Land Economics, University of Wisconsin Press, vol. 84(1), pages 83-96.
    20. Birthal, Pratap S. & Hazrana, Jaweriah, 2019. "Crop diversification and resilience of agriculture to climatic shocks: Evidence from India," Agricultural Systems, Elsevier, vol. 173(C), pages 345-354.
    21. Birthal, Pratap S. & Negi, Digvijay S. & Khan, Md. Tajuddin & Agarwal, Shaily, 2015. "Is Indian agriculture becoming resilient to droughts? Evidence from rice production systems," Food Policy, Elsevier, vol. 56(C), pages 1-12.
    22. Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
    23. Maximilian Auffhammer & Tamma A. Carleton, 2018. "Regional Crop Diversity and Weather Shocks in India," Asian Development Review, MIT Press, vol. 35(2), pages 113-130, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bozzola, Martina & Smale, Melinda, 2020. "The welfare effects of crop biodiversity as an adaptation to climate shocks in Kenya," World Development, Elsevier, vol. 135(C).
    2. Eder, Andreas & Salhofer, Klaus & Quddoos, Abdul, 2024. "The impact of cereal crop diversification on farm labor productivity under changing climatic conditions," Ecological Economics, Elsevier, vol. 223(C).
    3. Pratap S. Birthal & Jaweriah Hazrana & Digvijay S. Negi, 2019. "A multilevel analysis of drought risk in Indian agriculture: implications for managing risk at different geographical levels," Climatic Change, Springer, vol. 157(3), pages 499-513, December.
    4. Finger, Robert & Buchmann, Nina, 2014. "An ecological economic assessment of risk reducing effects of species diversity in grassland production," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182681, European Association of Agricultural Economists.
    5. Pratap S. Birthal & Jaweriah Hazrana & Digvijay S. Negi, 2021. "Effectiveness of Farmers’ Risk Management Strategies in Smallholder Agriculture: Evidence from India," Climatic Change, Springer, vol. 169(3), pages 1-35, December.
    6. Nilsson, Pia & Bommarco, Riccardo & Hansson, Helena & Kuns, Brian & Schaak, Henning, 2022. "Farm performance and input self-sufficiency increases with functional crop diversity on Swedish farms," Ecological Economics, Elsevier, vol. 198(C).
    7. Birthal, Pratap S. & Hazrana, Jaweriah & Negi, Digvijay S. & Mishra, Ashok K., 2022. "Assessing benefits of crop insurance vis-a-vis irrigation in Indian agriculture," Food Policy, Elsevier, vol. 112(C).
    8. Matthew C. LaFevor, 2022. "Crop Species Production Diversity Enhances Revenue Stability in Low-Income Farm Regions of Mexico," Agriculture, MDPI, vol. 12(11), pages 1-22, November.
    9. Finger, Robert & Buchmann, Nina, 2015. "An ecological economic assessment of risk-reducing effects of species diversity in managed grasslands," Ecological Economics, Elsevier, vol. 110(C), pages 89-97.
    10. Birthal, Pratap S. & Hazrana, Jaweriah & Roy, Devesh & Satyasai, K. J. S, 2024. "Can Finance Mitigate Climate Risks in Agriculture? Farm-level Evidence from India," Policy Papers 344992, ICAR National Institute of Agricultural Economics and Policy Research (NIAP).
    11. Sodjahin, Romaric & Carpentier, Alain & Koutchade, Obafèmi Philippe & Femenia, Fabienne, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: Estimation based on farm cost accounting data," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322295, Agricultural and Applied Economics Association.
    12. Piedra-Bonilla, Elena & Cunha, Dênis Antônio da & Braga, Marcelo José, 2021. "Climate Extreme and Crop Diversification: Adaptation to Climate Change in Brazil," 2021 Conference, August 17-31, 2021, Virtual 315320, International Association of Agricultural Economists.
    13. Bareille, Francois & Letort, Elodie & Dupraz, Pierre, 2017. "How Do Farmers Manage Their Biodiversity Through Time? A Dynamic Acreage Allocation Model With Productive Feedback," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260894, European Association of Agricultural Economists.
    14. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
    15. Singh, Amarendra Pratap & Narayanan, Krishnan, 2016. "How can weather affect crop area diversity? Panel data evidence from Andhra Pradesh, a rice growing state of India," Studies in Agricultural Economics, Research Institute for Agricultural Economics, vol. 118(2), pages 1-10, August.
    16. Pascual, Unai & Narloch, Ulf & Nordhagen, Stella & Drucker, Adam G., 2011. "The economics of agrobiodiversity conservation for food security under climate change," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 11(01), pages 1-30, November.
    17. Cecilia Bellora & Jean-Marc Bourgeon, 2014. "Agricultural Trade, Biodiversity Effects and Food Price Volatility," Working Papers hal-01052971, HAL.
    18. Jeffrey D. Michler & Dewan Abdullah Al Rafi & Jonathan Giezendanner & Anna Josephson & Valerien O. Pede & Elizabeth Tellman, 2024. "Impact Evaluations in Data Poor Settings: The Case of Stress-Tolerant Rice Varieties in Bangladesh," Papers 2409.02201, arXiv.org.
    19. Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de," Working Papers hal-03639951, HAL.
    20. Birthal, Pratap S. & Hazrana, Jaweriah, 2019. "Crop diversification and resilience of agriculture to climatic shocks: Evidence from India," Agricultural Systems, Elsevier, vol. 173(C), pages 345-354.

    More about this item

    Keywords

    Crop diversity; drought; Indian agriculture; Green Revolution; resilience;
    All these keywords.

    JEL classification:

    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:revdev:v:28:y:2023:i:2:p:166-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.