IDEAS home Printed from https://ideas.repec.org/a/psc/journl/v6y2014i2p89-104.html
   My bibliography  Save this article

Measuring Forecast Uncertainty of Corporate Bond Spreads by Bonferroni-Type Prediction Bands

Author

Listed:
  • Anna Staszewska-Bystrova

    () (University of Łódź)

  • Peter Winker

    () (Center for Social and Economic Research and Warsaw School of Economics
    University of Giessen)

Abstract

The recent financial crisis has seen huge swings in corporate bond spreads. It is analyzed what quality VAR-based forecasts would have had prior and during the crisis period. Given that forecasts of the mean of interest rates or financial market prices are subject to large uncertainty independent of the class of models used, major emphasis is put on the quality of measures of forecast uncertainty. The VAR considered is based on a model first suggested in the literature in 2005. In a rolling window analysis, both the model’s forecasts and joint prediction bands are calculated making use of recently proposed methods. Besides a traditional analysis of the forecast quality, the performance of the proposed prediction bands is assessed. It is shown that the actual coverage of joint prediction bands is superior to the coverage of naïve prediction bands constructed pointwise.

Suggested Citation

  • Anna Staszewska-Bystrova & Peter Winker, 2014. "Measuring Forecast Uncertainty of Corporate Bond Spreads by Bonferroni-Type Prediction Bands," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 6(2), pages 89-104, June.
  • Handle: RePEc:psc:journl:v:6:y:2014:i:2:p:89-104
    as

    Download full text from publisher

    File URL: http://cejeme.eu/publishedarticles/2014-03-31-635423905953593750-5529.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
    2. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2015. "Comparison of methods for constructing joint confidence bands for impulse response functions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 782-798.
    3. Ivan Savin & Peter Winker, 2013. "Heuristic model selection for leading indicators in Russia and Germany," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2012(2), pages 67-89.
    4. Inoue, Atsushi & Kilian, Lutz, 2016. "Joint confidence sets for structural impulse responses," Journal of Econometrics, Elsevier, vol. 192(2), pages 421-432.
    5. Daniel F. Waggoner & Tao Zha, 1999. "Conditional Forecasts In Dynamic Multivariate Models," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 639-651, November.
    6. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    7. Winker, Peter & Helmut, Lütkepohl & Staszewska-Bystrova, Anna, 2014. "Confidence Bands for Impulse Responses: Bonferroni versus Wald," Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100597, Verein für Socialpolitik / German Economic Association.
    8. Staszewska-Bystrova Anna, 2013. "Modified Scheffé’s Prediction Bands," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(5-6), pages 680-690, October.
    9. Matei Demetrescu & Mu-Chun Wang, 2014. "Incorporating Asymmetric Preferences into Fan Charts and Path Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 287-297, April.
    10. Michael Wolf & Dan Wunderli, 2012. "Bootstrap joint prediction regions," ECON - Working Papers 064, Department of Economics - University of Zurich, revised May 2013.
    11. Staszewska-Bystrova, Anna & Winker, Peter, 2013. "Constructing narrowest pathwise bootstrap prediction bands using threshold accepting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 221-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Grabowski & Anna Staszewska-Bystrova & Peter Winker, 2018. "Skewness-Adjusted Bootstrap Confidence Intervals and Confidence Bands for Impulse Response Functions," MAGKS Papers on Economics 201810, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).

    More about this item

    Keywords

    forecasts; corporate bond spreads; prediction bands;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:6:y:2014:i:2:p:89-104. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Krzysztof Osiewalski). General contact details of provider: http://cejeme.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.