IDEAS home Printed from https://ideas.repec.org/p/zur/econwp/064.html
   My bibliography  Save this paper

Bootstrap joint prediction regions

Author

Listed:
  • Michael Wolf
  • Dan Wunderli

Abstract

Many statistical applications require the forecast of a random variable of interest over several periods into the future. The sequence of individual forecasts, one period at a time, is called a path forecast, where the term path refers to the sequence of individual future realizations of the random variable. The problem of constructing a corresponding joint prediction region has been rather neglected in the literature so far: such a region is supposed to contain the entire future path with a prespecified probability. We develop bootstrap methods to construct joint prediction regions. The resulting regions are proven to be asymptotically consistent under a mild high-level assumption. We compare the finitesample performance of our joint prediction regions to some previous proposals via Monte Carlo simulations. An empirical application to a real data set is also provided.

Suggested Citation

  • Michael Wolf & Dan Wunderli, 2012. "Bootstrap joint prediction regions," ECON - Working Papers 064, Department of Economics - University of Zurich, revised May 2013.
  • Handle: RePEc:zur:econwp:064
    as

    Download full text from publisher

    File URL: http://www.econ.uzh.ch/static/wp/econwp064.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    2. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
    3. Potter, Simon M, 1995. "A Nonlinear Approach to US GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 109-125, April-Jun.
    4. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    5. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2010. "Empirical simultaneous confidence regions for path-forecasts," Discussion Paper Series 1: Economic Studies 2010,06, Deutsche Bundesbank.
    6. Clements, Michael P. & Taylor, Nick, 2001. "Bootstrapping prediction intervals for autoregressive models," International Journal of Forecasting, Elsevier, vol. 17(2), pages 247-267.
    7. Romano, Joseph P. & Shaikh, Azeem M. & Wolf, Michael, 2008. "Formalized Data Snooping Based On Generalized Error Rates," Econometric Theory, Cambridge University Press, vol. 24(02), pages 404-447, April.
    8. Bénédicte Vidaillet & V. D'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    9. Roy, Anindya & Fuller, Wayne A, 2001. "Estimation for Autoregressive Time Series with a Root Near 1," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 482-493, October.
    10. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Staszewska-Bystrova & Peter Winker, 2014. "Measuring Forecast Uncertainty of Corporate Bond Spreads by Bonferroni-Type Prediction Bands," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 6(2), pages 89-104, June.
    2. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2015. "Comparison of methods for constructing joint confidence bands for impulse response functions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 782-798.
    3. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2014. "Confidence Bands for Impulse Responses: Bonferroni versus Wald," SFB 649 Discussion Papers SFB649DP2014-007, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    4. Fresoli, Diego E. & Ruiz, Esther, 2016. "The uncertainty of conditional returns, volatilities and correlations in DCC models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 170-185.
    5. Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
    6. David Harris & Gael M. Martin & Indeewara Perera & Don S. Poskitt, 2017. "Construction and visualization of optimal confidence sets for frequentist distributional forecasts," Monash Econometrics and Business Statistics Working Papers 9/17, Monash University, Department of Econometrics and Business Statistics.
    7. Farooq Akram & Andrew Binning & Junior Maih, 2016. "Joint Prediction Bands for Macroeconomic Risk Management," Working Papers No 5/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    8. Pan, Li & Politis, Dimitris, 2014. "Bootstrap prediction intervals for Markov processesÂ," University of California at San Diego, Economics Working Paper Series qt7555757g, Department of Economics, UC San Diego.
    9. Stefan Bruder, 2014. "Comparing several methods to compute joint prediction regions for path forecasts generated by vector autoregressions," ECON - Working Papers 181, Department of Economics - University of Zurich, revised Dec 2015.
    10. Sílvia Gonçalves & Benoit Perron & Antoine Djogbenou, 2016. "Bootstrap prediction intervals for factor models," CIRANO Working Papers 2016s-19, CIRANO.
    11. Skrobotov, Anton & Turuntseva, Marina, 2015. "Theoretical Foundations of SVAR Modeling," Published Papers mak8, Russian Presidential Academy of National Economy and Public Administration.
    12. Antoniadis, Anestis & Brossat, Xavier & Cugliari, Jairo & Poggi, Jean-Michel, 2016. "A prediction interval for a function-valued forecast model: Application to load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 939-947.
    13. Paolo Vidoni, 2017. "Improved multivariate prediction regions for Markov process models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 1-18, March.

    More about this item

    Keywords

    Generalized error rates; path forecast; simultaneous prediction intervals;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zur:econwp:064. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marita Kieser). General contact details of provider: http://edirc.repec.org/data/seizhch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.