IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0291862.html
   My bibliography  Save this article

Which news topics drive economic prosperity in China?

Author

Listed:
  • Wanbo Lu
  • Yifu Wang
  • Xingjian Zhang

Abstract

Precise and real-time measurements of economic prosperity are vital to a country’s economic system. This study aims to identify news topics that promoted economic prosperity in China from 2011–2021. By extracting economic topics from news text data, we construct a news coincidence index with comprehensive information and strong timeliness and reveal the trend of topic contribution. The Latent Dirichlet Allocation (LDA) topic model is applied to extract economic topics from the news. We use a mixed-frequency dynamic factor model to track rapid economic development without using high-frequency weekly and daily data. We identify the six most influential topics and investigate their evolution, which may serve as a reference for economic construction and regulation.

Suggested Citation

  • Wanbo Lu & Yifu Wang & Xingjian Zhang, 2023. "Which news topics drive economic prosperity in China?," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-23, October.
  • Handle: RePEc:plo:pone00:0291862
    DOI: 10.1371/journal.pone.0291862
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291862
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0291862&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0291862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huang, Yun & Luk, Paul, 2020. "Measuring economic policy uncertainty in China," China Economic Review, Elsevier, vol. 59(C).
    2. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    3. Diamantis Petropoulos Petalas & Hein van Schie & Paul Hendriks Vettehen, 2017. "Forecasted economic change and the self-fulfilling prophecy in economic decision-making," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-18, March.
    4. Bańbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346.
    5. Clément Bortoli & Stéphanie Combes & Thomas Renault, 2018. "Nowcasting GDP Growth by Reading the Newspapers," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 505-506, pages 17-33.
    6. Shapiro, Adam Hale & Sudhof, Moritz & Wilson, Daniel J., 2022. "Measuring news sentiment," Journal of Econometrics, Elsevier, vol. 228(2), pages 221-243.
    7. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    8. Aguilar, Pablo & Ghirelli, Corinna & Pacce, Matías & Urtasun, Alberto, 2021. "Can news help measure economic sentiment? An application in COVID-19 times," Economics Letters, Elsevier, vol. 199(C).
    9. Larsen, Vegard H. & Thorsrud, Leif A., 2019. "The value of news for economic developments," Journal of Econometrics, Elsevier, vol. 210(1), pages 203-218.
    10. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    11. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "News media versus FRED‐MD for macroeconomic forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 63-81, January.
    12. Rambaccussing, Dooruj & Kwiatkowski, Andrzej, 2020. "Forecasting with news sentiment: Evidence with UK newspapers," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1501-1516.
    13. Xu, Zhaoxia, 2020. "Economic policy uncertainty, cost of capital, and corporate innovation," Journal of Banking & Finance, Elsevier, vol. 111(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Barbaglia & Sergio Consoli & Sebastiano Manzan, 2024. "Forecasting GDP in Europe with textual data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 338-355, March.
    2. Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Pérez & Elena Vidal, 2022. "Using newspapers for textual indicators: which and how many?," Working Papers 2235, Banco de España.
    3. Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
    4. Yongan Xu & Jianqiong Wang & Zhonglu Chen & Chao Liang, 2023. "Sentiment indices and stock returns: Evidence from China," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 1063-1080, January.
    5. Stolbov, Mikhail & Shchepeleva, Maria & Karminsky, Alexander, 2022. "When central bank research meets Google search: A sentiment index of global financial stress," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    6. Adämmer, Philipp & Prüser, Jan & Schüssler, Rainer A., 2025. "Forecasting macroeconomic tail risk in real time: Do textual data add value?," International Journal of Forecasting, Elsevier, vol. 41(1), pages 307-320.
    7. Vegard H ghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    8. Gardner, Ben & Scotti, Chiara & Vega, Clara, 2022. "Words speak as loudly as actions: Central bank communication and the response of equity prices to macroeconomic announcements," Journal of Econometrics, Elsevier, vol. 231(2), pages 387-409.
    9. Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
    10. Dorinth van Dijk & Jasper de Winter, 2023. "Nowcasting GDP using tone-adjusted time varying news topics: Evidence from the financial press," Working Papers 766, DNB.
    11. Bennett Schmanski & Chiara Scotti & Clara Vega, 2023. "Fed Communication, News, Twitter, and Echo Chambers," Finance and Economics Discussion Series 2023-036, Board of Governors of the Federal Reserve System (U.S.).
    12. Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Perez & Elena Vidal, 2024. "Using Newspapers for Textual Indicators: Guidance Based on Spanish- and Portuguese-Speaking Countries," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 643-692, August.
    13. Libero Monteforte & Valentina Raponi, 2019. "Short‐term forecasts of economic activity: Are fortnightly factors useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
    14. Liang, Chao & Xu, Yongan & Wang, Jianqiong & Yang, Mo, 2022. "Whether dimensionality reduction techniques can improve the ability of sentiment proxies to predict stock market returns," International Review of Financial Analysis, Elsevier, vol. 82(C).
    15. Cui, Xin & Wang, Chunfeng & Sensoy, Ahmet & Liao, Jing & Xie, Xiaochen, 2023. "Economic policy uncertainty and green innovation: Evidence from China," Economic Modelling, Elsevier, vol. 118(C).
    16. Bai, Chenjiang & Duan, Yuejiao & Goodell, John W., 2025. "Multi-media sentiment to systemic risk: Evidence from COVID-19," International Review of Economics & Finance, Elsevier, vol. 97(C).
    17. Celso Brunetti & Marc Joëts & Valérie Mignon, 2023. "Reasons Behind Words: OPEC Narratives and the Oil Market," Working Papers 2023-19, CEPII research center.
    18. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    19. Glocker, Christian & Kaniovski, Serguei, 2020. "Structural modeling and forecasting using a cluster of dynamic factor models," MPRA Paper 101874, University Library of Munich, Germany.
    20. Leif Anders Thorsrud, 2020. "Words are the New Numbers: A Newsy Coincident Index of the Business Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0291862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.