IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03205161.html

Nowcasting GDP Growth by Reading Newspapers

Author

Listed:
  • Clément Bortoli

    (INSEE - Institut national de la statistique et des études économiques (INSEE))

  • Stéphanie Combes

    (INSEE - Institut national de la statistique et des études économiques (INSEE))

  • Thomas Renault

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

GDP statistics in France are published on a quarterly basis, 30 days after the end of the quarter. In this article, we consider media content as an additional data source to traditional economic tools to improve short-term forecast/nowcast of French GDP. We use a database of more than a million articles published in the newspaper Le Monde between 1990 and 2017 to create a new synthetic indicator capturing media sentiment about the state of the economy. We compare an autoregressive model augmented by the media sentiment indicator with a simple autoregressive model. We also consider an autoregressive model augmented with the Insee Business Climate indicator. Adding a media indicator improves French GDP forecasts compared to these two reference models. We also test an automated approach using penalised regression, where we use the frequencies at which words or expressions appear in the articles as regressors, rather than aggregated information. Although this approach is easier to implement than the former, its results are less accurate.

Suggested Citation

  • Clément Bortoli & Stéphanie Combes & Thomas Renault, 2018. "Nowcasting GDP Growth by Reading Newspapers," Post-Print hal-03205161, HAL.
  • Handle: RePEc:hal:journl:hal-03205161
    DOI: 10.24187/ecostat.2018.505d.1964
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aguilar, Pablo & Ghirelli, Corinna & Pacce, Matías & Urtasun, Alberto, 2021. "Can news help measure economic sentiment? An application in COVID-19 times," Economics Letters, Elsevier, vol. 199(C).
    2. Simionescu, Mihaela, 2022. "Econometrics of sentiments- sentometrics and machine learning: The improvement of inflation predictions in Romania using sentiment analysis," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    3. Luca Barbaglia & Sergio Consoli & Sebastiano Manzan, 2024. "Forecasting GDP in Europe with textual data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 338-355, March.
    4. Rudrani Bhattacharya & Bornali Bhandari & Sudipto Mundle, 2023. "Nowcasting India’s Quarterly GDP Growth: A Factor-Augmented Time-Varying Coefficient Regression Model (FA-TVCRM)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 213-234, March.
    5. Picault, Matthieu & Pinter, Julien & Renault, Thomas, 2022. "Media sentiment on monetary policy: Determinants and relevance for inflation expectations," Journal of International Money and Finance, Elsevier, vol. 124(C).
    6. Santos, Anabela M. & Coad, Alex, 2023. "Monitoring and evaluation of transformative innovation policy: Suggestions for Improvement," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    7. Wanbo Lu & Yifu Wang & Xingjian Zhang, 2023. "Which news topics drive economic prosperity in China?," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-23, October.
    8. Necmettin Alpay Koçak, 2020. "The Role of Ecb Speeches in Nowcasting German Gdp," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2020(2), pages 05-20.
    9. Massimo Baldini & Andrea Barigazzi, 2024. "Surnames in Local Newspapers and Social Mobility," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 174(3), pages 859-879, September.
    10. Julian Ashwin & Eleni Kalamara & Lorena Saiz, 2024. "Nowcasting Euro area GDP with news sentiment: A tale of two crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 887-905, August.
    11. KOCAK, Necmettin Alpay, 2021. "The Impacts Of Speeches On Nowcasting Gdp: A Case Study On Euro Area Markets," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 25(1), pages 6-29, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03205161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.