Nowcasting GDP Growth by Reading the Newspapers
Author
Abstract
Suggested Citation
DOI: https://doi.org/10.24187/ecostat.2018.505d.1964
Download full text from publisher
Other versions of this item:
- Clément Bortoli & Stéphanie Combes & Thomas Renault, 2018. "Nowcasting GDP Growth by Reading Newspapers," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205161, HAL.
- Clément Bortoli & Stéphanie Combes & Thomas Renault, 2018. "Nowcasting GDP Growth by Reading Newspapers," Post-Print hal-03205161, HAL.
References listed on IDEAS
- Fondeur, Y. & Karamé, F., 2013.
"Can Google data help predict French youth unemployment?,"
Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
- Frédéric Karamé & Yannick Fondeur, 2012. "Can Google Data Help Predict French Youth Unemployment?," Documents de recherche 12-03, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
- Y. Fondeur & F. Karamé, 2013. "Can Google data help predict French youth unemployment?," Post-Print hal-02297071, HAL.
- D’Amuri, Francesco & Marcucci, Juri, 2017.
"The predictive power of Google searches in forecasting US unemployment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
- Francesco D'Amuri & Juri Marcucci, 2012. "The predictive power of Google searches in forecasting unemployment," Temi di discussione (Economic working papers) 891, Bank of Italy, Economic Research and International Relations Area.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005.
"There is a risk-return trade-off after all,"
Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2003. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2003s-26, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," CIRANO Working Papers 2004s-24, CIRANO.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "There is a Risk-Return Tradeoff After All," NBER Working Papers 10913, National Bureau of Economic Research, Inc.
- Diego García, 2013. "Sentiment during Recessions," Journal of Finance, American Finance Association, vol. 68(3), pages 1267-1300, June.
- repec:bny:wpaper:0034 is not listed on IDEAS
- McLaren, Nick & Shanbhogue, Rachana, 2011. "Using internet search data as economic indicators," Bank of England Quarterly Bulletin, Bank of England, vol. 51(2), pages 134-140.
- Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017.
"The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey,"
Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
- Mogliani, M. & Brunhes-Lesage, V. & Darné, O. & Pluyaud, B., 2014. "New estimate of the MIBA forecasting model. Modeling first-release GDP using the Banque de France's Monthly Business Survey and the “blocking” approach," Working papers 473, Banque de France.
- Olivier Darne, 2008. "Using business survey in industrial and services sector to nowcast GDP growth:The French case," Economics Bulletin, AccessEcon, vol. 3(32), pages 1-8.
- Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
- M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
- Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Picault, Matthieu & Pinter, Julien & Renault, Thomas, 2022.
"Media sentiment on monetary policy: Determinants and relevance for inflation expectations,"
Journal of International Money and Finance, Elsevier, vol. 124(C).
- Matthieu PICAULT & Julien PINTER & Thomas RENAULT, 2021. "Media sentiment on monetary policy: determinants and relevance for inflation expectations," LEO Working Papers / DR LEO 2895, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Matthieu Picault & Julien Pinter & Thomas Renault, 2022. "Media sentiment on monetary policy: Determinants and relevance for inflation expectations," Post-Print hal-03959147, HAL.
- Matthieu Picault & Julien Pinter & Thomas Renault, 2022. "Media sentiment on monetary policy: Determinants and relevance for inflation expectations," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03959147, HAL.
- Matthieu Picault & Julien Pinter & Thomas Renault, 2022. "Media sentiment on monetary policy: Determinants and relevance for inflation expectations," Post-Print hal-03810447, HAL.
- Aguilar, Pablo & Ghirelli, Corinna & Pacce, Matías & Urtasun, Alberto, 2021.
"Can news help measure economic sentiment? An application in COVID-19 times,"
Economics Letters, Elsevier, vol. 199(C).
- Pablo Aguilar & Corinna Ghirelli & Matías Pacce & Alberto Urtasun, 2020. "Can news help measure economic sentiment? An application in COVID-19 times," Working Papers 2027, Banco de España.
- Simionescu, Mihaela, 2022. "Econometrics of sentiments- sentometrics and machine learning: The improvement of inflation predictions in Romania using sentiment analysis," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
- Luca Barbaglia & Sergio Consoli & Sebastiano Manzan, 2024. "Forecasting GDP in Europe with textual data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 338-355, March.
- Rudrani Bhattacharya & Bornali Bhandari & Sudipto Mundle, 2023. "Nowcasting India’s Quarterly GDP Growth: A Factor-Augmented Time-Varying Coefficient Regression Model (FA-TVCRM)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 213-234, March.
- Santos, Anabela M. & Coad, Alex, 2023. "Monitoring and evaluation of transformative innovation policy: Suggestions for Improvement," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
- Necmettin Alpay Koçak, 2020. "The Role of Ecb Speeches in Nowcasting German Gdp," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2020(2), pages 05-20.
- Massimo Baldini & Andrea Barigazzi, 2023. "Surnames in local newspapers and social mobility," Center for the Analysis of Public Policies (CAPP) 0181, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
- KOCAK, Necmettin Alpay, 2021. "The Impacts Of Speeches On Nowcasting Gdp: A Case Study On Euro Area Markets," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 25(1), pages 6-29, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Necmettin Alpay Koçak, 2020. "The Role of Ecb Speeches in Nowcasting German Gdp," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2020(2), pages 05-20.
- Benedikt Maas, 2020.
"Short‐term forecasting of the US unemployment rate,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
- Maas, Benedikt, 2019. "Short-term forecasting of the US unemployment rate," MPRA Paper 94066, University Library of Munich, Germany.
- Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022.
"Making text count: Economic forecasting using newspaper text,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
- Kalamara, Eleni & Turrell, Arthur & Redl, Chris & Kapetanios, George & Kapadia, Sujit, 2020. "Making text count: economic forecasting using newspaper text," Bank of England working papers 865, Bank of England.
- González-Fernández, Marcos & González-Velasco, Carmen, 2020. "A sentiment index to measure sovereign risk using Google data," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 406-418.
- Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.
- Bennani, Hamza, 2018.
"Media coverage and ECB policy-making: Evidence from an augmented Taylor rule,"
Journal of Macroeconomics, Elsevier, vol. 57(C), pages 26-38.
- Hamza Bennani, 2018. "Media Coverage and ECB Policy-Making: Evidence from an Augmented Taylor Rule," Post-Print hal-01773570, HAL.
- Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
- David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
- repec:hal:spmain:info:hdl:2441/3mgbd73vkp9f9oje7utooe7vpg is not listed on IDEAS
- Ahmed, Yousry & Elshandidy, Tamer, 2016. "The effect of bidder conservatism on M&A decisions: Text-based evidence from US 10-K filings," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 176-190.
- Thomas Renault, 2020.
"Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages,"
Digital Finance, Springer, vol. 2(1), pages 1-13, September.
- Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205149, HAL.
- Thomas Renault, 2020. "Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages," Post-Print hal-03205149, HAL.
- Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
- Paul Hubert & Fabien Labondance, 2016.
"Central Bank Sentiment and Policy Expectations,"
SciencePo Working papers Main
hal-03459227, HAL.
- Fabien Labondance & Paul Hubert, 2017. "Central Bank sentiment and policy expectations," Working Papers hal-03457514, HAL.
- Hubert, Paul & Labondance, Fabien, 2017. "Central bank sentiment and policy expectations," Bank of England working papers 648, Bank of England.
- Paul Hubert & Fabien Labondance, 2016. "Central Bank Sentiment and Policy Expectations," Working Papers hal-01374710, HAL.
- Paul Hubert & Fabien Labondance, 2016. "Central Bank Sentiment and Policy Expectations," Working Papers 2016-07, CRESE.
- Fabien Labondance & Paul Hubert, 2017. "Central Bank sentiment and policy expectations," SciencePo Working papers Main hal-03457514, HAL.
- Paul Hubert & Fabien Labondance, 2016. "Central Bank sentiment and policy expectations," Documents de Travail de l'OFCE 2016-29, Observatoire Francais des Conjonctures Economiques (OFCE).
- Paul Hubert & Fabien Labondance, 2016. "Central Bank Sentiment and Policy Expectations," Working Papers hal-03459227, HAL.
- Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016.
"Media-expressed negative tone and firm-level stock returns,"
Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
- Khurshid Ahmad & JingGuang Han & Elaine Hutson & Colm Kearney & Sha Liu, 2016. "Media-expressed negative tone and firm-level stock returns," Open Access publications 10197/8208, Research Repository, University College Dublin.
- Bianconi, Marcelo & Hua, Xiaxin & Tan, Chih Ming, 2015.
"Determinants of systemic risk and information dissemination,"
International Review of Economics & Finance, Elsevier, vol. 38(C), pages 352-368.
- Marcelo Bianconi & Xiaxin Hua & Chih Ming Tan, 2013. "Determinants of Systemic Risk and Information Dissemination," Working Paper series 67_13, Rimini Centre for Economic Analysis.
- Marcelo Bianconi & Xiaxin Hua & Chih Ming Tan, 2013. "Determinants of Systemic Risk and Information Dissemination," Discussion Papers Series, Department of Economics, Tufts University 0776, Department of Economics, Tufts University.
- Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
- Al-Nasseri, Alya & Menla Ali, Faek & Tucker, Allan, 2021. "Investor sentiment and the dispersion of stock returns: Evidence based on the social network of investors," International Review of Financial Analysis, Elsevier, vol. 78(C).
- Yuting Chen & Don Bredin & Valerio Potì & Roman Matkovskyy, 2022.
"COVID risk narratives: a computational linguistic approach to the econometric identification of narrative risk during a pandemic,"
Digital Finance, Springer, vol. 4(1), pages 17-61, March.
- Yuting Chen & Don Bredin & Valerio Potì & Roman Matkovskyy, 2022. "COVID risk narratives: a computational linguistic approach to the econometric identification of narrative risk during a pandemic," Post-Print hal-04021587, HAL.
- John Garcia, 2021. "Analyst herding and firm-level investor sentiment," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(4), pages 461-494, December.
- Youngjoon Lee & Soohyon Kim & Ki Young Park, 2018. "Deciphering Monetary Policy Committee Minutes with Text Mining Approach: A Case of South Korea," Working papers 2018rwp-132, Yonsei University, Yonsei Economics Research Institute.
- Steven Heston & Nitish R. Sinha, 2016. "News versus Sentiment : Predicting Stock Returns from News Stories," Finance and Economics Discussion Series 2016-048, Board of Governors of the Federal Reserve System (U.S.).
More about this item
JEL classification:
- E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nse:ecosta:ecostat_2018_505-506_2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Veronique Egloff (email available below). General contact details of provider: https://edirc.repec.org/data/inseefr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.