Google Trends and Bitcoin volatility forecast
Author
Abstract
Suggested Citation
DOI: 10.31737/22212264_2024_4_118-135
Download full text from publisher
References listed on IDEAS
- Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2019. "Does twitter predict Bitcoin?," Economics Letters, Elsevier, vol. 174(C), pages 118-122.
- Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017.
"Rolling window selection for out-of-sample forecasting with time-varying parameters,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Economics Working Papers 1435, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2016.
- Lu Jin & Atsushi Inoue & Barbara Rossi, 2015. "Rolling Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," Working Papers 768, Barcelona School of Economics.
- Chun Liu & John M. Maheu, 2008.
"Are There Structural Breaks in Realized Volatility?,"
Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
- Chun Liu & John M Maheu, 2007. "Are there Structural Breaks in Realized Volatility?," Working Papers tecipa-304, University of Toronto, Department of Economics.
- Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
- Clements, Adam & Preve, Daniel P.A., 2021.
"A Practical Guide to harnessing the HAR volatility model,"
Journal of Banking & Finance, Elsevier, vol. 133(C).
- A Clements & D Preve, 2019. "A Practical Guide to Harnessing the HAR Volatility Model," NCER Working Paper Series 120, National Centre for Econometric Research.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
- Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2021.
"COVID-19, lockdowns and well-being: Evidence from Google Trends,"
Journal of Public Economics, Elsevier, vol. 193(C).
- Abel Brodeur & Andrew Clark & Sarah Fleche & Nattavudh Powdthavee, 2020. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," Working Papers 2004E, University of Ottawa, Department of Economics.
- Abel Brodeur & Andrew E. Clark & Sarah Flèche & Nattavudh Powdthavee, 2021. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," PSE-Ecole d'économie de Paris (Postprint) halshs-03029872, HAL.
- Brodeur, Abel & Clark, Andrew E. & Flèche, Sarah & Powdthavee, Nattavudh, 2020. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," IZA Discussion Papers 13204, Institute of Labor Economics (IZA).
- Abel Brodeur & Andrew E. Clark & Sarah Flèche & Nattavudh Powdthavee, 2021. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," Post-Print halshs-03029872, HAL.
- Abel Brodeur & Andrew E. Clark & Sarah Flèche & Nattavudh Powdthavee, 2020. "Covid-19, lockdowns and well-being: evidence from Google trends," CEP Discussion Papers dp1693, Centre for Economic Performance, LSE.
- Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2020. "COVID-19, lockdowns and well-being: evidence from Google Trends," LSE Research Online Documents on Economics 108456, London School of Economics and Political Science, LSE Library.
- Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2020. "COVID-19, Lockdowns and Well-Being: Evidence from Google Trends," GLO Discussion Paper Series 552, Global Labor Organization (GLO).
- Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021.
"Forecasting Realized Volatility of Bitcoin: The Role of the Trade War,"
Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
- Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Working Papers 202003, University of Pretoria, Department of Economics.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
- Bakas, Dimitrios & Magkonis, Georgios & Oh, Eun Young, 2022. "What drives volatility in Bitcoin market?," Finance Research Letters, Elsevier, vol. 50(C).
- Al Guindy, Mohamed, 2021. "Cryptocurrency price volatility and investor attention," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 556-570.
- Lee, Kangsan & Jeong, Daeyoung, 2023. "Too much is too bad: The effect of media coverage on the price volatility of cryptocurrencies," Journal of International Money and Finance, Elsevier, vol. 133(C).
- Manevich, Vyacheslav & Peresetsky, Anatoly & Pogorelova, Polina, 2022. "Stock market and cryptocurrency market volatility," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 65, pages 65-76.
- Kyriazis, Nikolaos & Papadamou, Stephanos & Tzeremes, Panayiotis & Corbet, Shaen, 2023. "The differential influence of social media sentiment on cryptocurrency returns and volatility during COVID-19," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 307-317.
- Roxana Chiriac & Valeri Voev, 2011.
"Modelling and forecasting multivariate realized volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
- Roxana Chiriac & Valeri Voev, 2008. "Modelling and Forecasting Multivariate Realized Volatility," CREATES Research Papers 2008-39, Department of Economics and Business Economics, Aarhus University.
- Chiriac, Roxana & Voev, Valeri, 2008. "Modelling and forecasting multivariate realized volatility," CoFE Discussion Papers 08/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Ullah, Subhan & Attah-Boakye, Rexford & Adams, Kweku & Zaefarian, Ghasem, 2022. "Assessing the influence of celebrity and government endorsements on bitcoin’s price volatility," Journal of Business Research, Elsevier, vol. 145(C), pages 228-239.
- Artem Aganin & Vyacheslav Manevich & Anatoly Peresetsky & Polina Pogorelova, 2023. "Comparison of Cryptocurrency and Stock Market Volatility Forecast Models," HSE Economic Journal, National Research University Higher School of Economics, vol. 27(1), pages 49-77.
- Dias, Ishanka K. & Fernando, J.M. Ruwani & Fernando, P. Narada D., 2022. "Does investor sentiment predict bitcoin return and volatility? A quantile regression approach," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Maryam Batool & Huma Ghulam & Muhammad Azmat Hayat & Muhammad Zahid Naeem & Abdullah Ejaz & Zulfiqar Ali Imran & Cristi Spulbar & Ramona Birau & Tiberiu Horațiu Gorun, 2021. "How COVID-19 has shaken the sharing economy? An analysis using Google trends data," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 34(1), pages 2374-2386, January.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Aganin, Artem, 2017. "Forecast comparison of volatility models on Russian stock market," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 48, pages 63-84.
- Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
- Qian, Lihua & Wang, Jiqian & Ma, Feng & Li, Ziyang, 2022. "Bitcoin volatility predictability–The role of jumps and regimes," Finance Research Letters, Elsevier, vol. 47(PB).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Teterin, Maksim & Peresetsky, Anatoly, 2025. "Can Ethereum predict Bitcoin’s volatility?," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 77, pages 74-90.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Teterin, Maksim & Peresetsky, Anatoly, 2025. "Can Ethereum predict Bitcoin’s volatility?," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 77, pages 74-90.
- Liu, Jing & Ma, Feng & Zhang, Yaojie, 2019. "Forecasting the Chinese stock volatility across global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 466-477.
- Feng, Lingbing & Qi, Jiajun & Lucey, Brian, 2024. "Enhancing cryptocurrency market volatility forecasting with daily dynamic tuning strategy," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
- Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
- Wu, Hanlin & Li, Pan & Cao, Jiawei & Xu, Zijian, 2024. "Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model," Energy Economics, Elsevier, vol. 134(C).
- Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.
- Lyócsa, Štefan & Plíhal, Tomáš & Výrost, Tomáš, 2021. "FX market volatility modelling: Can we use low-frequency data?," Finance Research Letters, Elsevier, vol. 40(C).
- Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
- Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Fu, Tong & Huang, Dasen & Feng, Lingbing & Tang, Xiaoping, 2024. "More is better? The impact of predictor choice on the INE oil futures volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
- Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
- Feng, Lingbing & Rao, Haicheng & Lucey, Brian & Zhu, Yiying, 2024. "Volatility forecasting on China's oil futures: New evidence from interpretable ensemble boosting trees," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1595-1615.
- Chatziantoniou, Ioannis & Degiannakis, Stavros & Filis, George, 2019.
"Futures-based forecasts: How useful are they for oil price volatility forecasting?,"
Energy Economics, Elsevier, vol. 81(C), pages 639-649.
- Chatziantoniou, Ioannis & Degiannakis, Stavros & Filis, George, 2019. "Futures-based forecasts: How useful are they for oil price volatility forecasting?," MPRA Paper 96446, University Library of Munich, Germany.
- Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
- Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
- Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
- Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Sila, Jan & Kocenda, Evzen & Kristoufek, Ladislav & Kukacka, Jiri, 2024.
"Good vs. bad volatility in major cryptocurrencies: The dichotomy and drivers of connectedness,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 96(C).
- Jan Sila & Evzen Kocenda & Ladislav Kristoufek & Jiri Kukacka, 2023. "Good vs. Bad Volatility in Major Cryptocurrencies: The Dichotomy and Drivers of Connectedness," Working Papers IES 2023/24, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2023.
More about this item
Keywords
Bitcoin; realized volatility; volatility prediction; cryptocurrency; HAR-RV model; Google Trends;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nea:journl:y:2024:i:64:p:118-135. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexey Tcharykov (email available below). General contact details of provider: https://edirc.repec.org/data/nearuea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.