IDEAS home Printed from https://ideas.repec.org/a/nea/journl/y2024i64p118-135.html
   My bibliography  Save this article

Google Trends and Bitcoin volatility forecast

Author

Listed:
  • Teterin, M.

    (HSE University, Moscow, Russia)

  • Peresetsky, A.

    (HSE University, Moscow, Russia)

Abstract

Since the introduction of Bitcoin in 2008, the size of the cryptocurrency market is becoming increasingly important for investors. Thus, the forecast of cryptocurrency price volatility is of particular interest to portfolio investors, as they are interested in accurately estimating the standard deviation of their portfolios to calculate the Value-at-R isk (VaR) as a risk measure for more optimal portfolio management. The HAR-RV model introduced by F. Corsi (in 2009) became more effective than the traditional GARCH type models in forecasting in the volatility of financial assets. In the last decade, cryptocurrencies started to dominate both the social media and the financial press. At the same time, some academic papers use social media data to enhance the cryptocurrency volatility forecasting models. In our paper, we study how the use of Google Trends data could improve the precision of one-day-ahead of Bitcoin price volatility models forecasts. We use three different measures of the forecast precision. All models are estimated in rolling windows in order to control for possible structural breaks. Also, we estimate the optimal length of rolling windows to provide the best forecast precision on the historical Bitcoin price data from January 1, 2018 to December 31, 2022. We verify that the predictive power of the chosen model statistically differs from other models via MCS-test.

Suggested Citation

  • Teterin, M. & Peresetsky, A., 2024. "Google Trends and Bitcoin volatility forecast," Journal of the New Economic Association, New Economic Association, vol. 65(4), pages 118-135.
  • Handle: RePEc:nea:journl:y:2024:i:64:p:118-135
    DOI: 10.31737/22212264_2024_4_118-135
    as

    Download full text from publisher

    File URL: http://www.econorus.org/repec/journl/2024-65-118-135r.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.31737/22212264_2024_4_118-135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2019. "Does twitter predict Bitcoin?," Economics Letters, Elsevier, vol. 174(C), pages 118-122.
    2. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    3. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    4. Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
    5. Clements, Adam & Preve, Daniel P.A., 2021. "A Practical Guide to harnessing the HAR volatility model," Journal of Banking & Finance, Elsevier, vol. 133(C).
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    7. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    8. Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2021. "COVID-19, lockdowns and well-being: Evidence from Google Trends," Journal of Public Economics, Elsevier, vol. 193(C).
    9. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
    10. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    11. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    12. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    13. Bakas, Dimitrios & Magkonis, Georgios & Oh, Eun Young, 2022. "What drives volatility in Bitcoin market?," Finance Research Letters, Elsevier, vol. 50(C).
    14. Al Guindy, Mohamed, 2021. "Cryptocurrency price volatility and investor attention," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 556-570.
    15. Lee, Kangsan & Jeong, Daeyoung, 2023. "Too much is too bad: The effect of media coverage on the price volatility of cryptocurrencies," Journal of International Money and Finance, Elsevier, vol. 133(C).
    16. Manevich, Vyacheslav & Peresetsky, Anatoly & Pogorelova, Polina, 2022. "Stock market and cryptocurrency market volatility," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 65, pages 65-76.
    17. Kyriazis, Nikolaos & Papadamou, Stephanos & Tzeremes, Panayiotis & Corbet, Shaen, 2023. "The differential influence of social media sentiment on cryptocurrency returns and volatility during COVID-19," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 307-317.
    18. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    19. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    20. Ullah, Subhan & Attah-Boakye, Rexford & Adams, Kweku & Zaefarian, Ghasem, 2022. "Assessing the influence of celebrity and government endorsements on bitcoin’s price volatility," Journal of Business Research, Elsevier, vol. 145(C), pages 228-239.
    21. Artem Aganin & Vyacheslav Manevich & Anatoly Peresetsky & Polina Pogorelova, 2023. "Comparison of Cryptocurrency and Stock Market Volatility Forecast Models," HSE Economic Journal, National Research University Higher School of Economics, vol. 27(1), pages 49-77.
    22. Dias, Ishanka K. & Fernando, J.M. Ruwani & Fernando, P. Narada D., 2022. "Does investor sentiment predict bitcoin return and volatility? A quantile regression approach," International Review of Financial Analysis, Elsevier, vol. 84(C).
    23. Maryam Batool & Huma Ghulam & Muhammad Azmat Hayat & Muhammad Zahid Naeem & Abdullah Ejaz & Zulfiqar Ali Imran & Cristi Spulbar & Ramona Birau & Tiberiu Horațiu Gorun, 2021. "How COVID-19 has shaken the sharing economy? An analysis using Google trends data," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 34(1), pages 2374-2386, January.
    24. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    25. Aganin, Artem, 2017. "Forecast comparison of volatility models on Russian stock market," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 48, pages 63-84.
    26. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    27. Qian, Lihua & Wang, Jiqian & Ma, Feng & Li, Ziyang, 2022. "Bitcoin volatility predictability–The role of jumps and regimes," Finance Research Letters, Elsevier, vol. 47(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teterin, Maksim & Peresetsky, Anatoly, 2025. "Can Ethereum predict Bitcoin’s volatility?," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 77, pages 74-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teterin, Maksim & Peresetsky, Anatoly, 2025. "Can Ethereum predict Bitcoin’s volatility?," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 77, pages 74-90.
    2. Liu, Jing & Ma, Feng & Zhang, Yaojie, 2019. "Forecasting the Chinese stock volatility across global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 466-477.
    3. Feng, Lingbing & Qi, Jiajun & Lucey, Brian, 2024. "Enhancing cryptocurrency market volatility forecasting with daily dynamic tuning strategy," International Review of Financial Analysis, Elsevier, vol. 94(C).
    4. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    5. Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
    6. Wu, Hanlin & Li, Pan & Cao, Jiawei & Xu, Zijian, 2024. "Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model," Energy Economics, Elsevier, vol. 134(C).
    7. Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.
    8. Lyócsa, Štefan & Plíhal, Tomáš & Výrost, Tomáš, 2021. "FX market volatility modelling: Can we use low-frequency data?," Finance Research Letters, Elsevier, vol. 40(C).
    9. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    10. Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    11. Fu, Tong & Huang, Dasen & Feng, Lingbing & Tang, Xiaoping, 2024. "More is better? The impact of predictor choice on the INE oil futures volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
    12. Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
    13. Feng, Lingbing & Rao, Haicheng & Lucey, Brian & Zhu, Yiying, 2024. "Volatility forecasting on China's oil futures: New evidence from interpretable ensemble boosting trees," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1595-1615.
    14. Chatziantoniou, Ioannis & Degiannakis, Stavros & Filis, George, 2019. "Futures-based forecasts: How useful are they for oil price volatility forecasting?," Energy Economics, Elsevier, vol. 81(C), pages 639-649.
    15. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    16. Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
    17. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    18. Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
    19. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    20. Sila, Jan & Kocenda, Evzen & Kristoufek, Ladislav & Kukacka, Jiri, 2024. "Good vs. bad volatility in major cryptocurrencies: The dichotomy and drivers of connectedness," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 96(C).

    More about this item

    Keywords

    Bitcoin; realized volatility; volatility prediction; cryptocurrency; HAR-RV model; Google Trends;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nea:journl:y:2024:i:64:p:118-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexey Tcharykov (email available below). General contact details of provider: https://edirc.repec.org/data/nearuea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.