IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35114-7.html
   My bibliography  Save this article

Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement

Author

Listed:
  • Florian Humpenöder

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Alexander Popp

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Carl-Friedrich Schleussner

    (Climate Analytics (CA)
    Humboldt University of Berlin)

  • Anton Orlov

    (CICERO)

  • Michael Gregory Windisch

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    Humboldt University of Berlin)

  • Inga Menke

    (Climate Analytics (CA)
    Humboldt University of Berlin)

  • Julia Pongratz

    (Ludwig-Maximilians-University (LMU) Munich
    Max Planck Institute for Meteorology)

  • Felix Havermann

    (Ludwig-Maximilians-University (LMU) Munich)

  • Wim Thiery

    (Vrije Universiteit Brussel)

  • Fei Luo

    (Vrije Universiteit Amsterdam
    Royal Netherlands Meteorological Institute (KNMI))

  • Patrick v. Jeetze

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    Humboldt University of Berlin)

  • Jan Philipp Dietrich

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Hermann Lotze-Campen

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association
    Humboldt University of Berlin)

  • Isabelle Weindl

    (Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association)

  • Quentin Lejeune

    (Climate Analytics (CA))

Abstract

Transformation pathways for the land sector in line with the Paris Agreement depend on the assumption of globally implemented greenhouse gas (GHG) emission pricing, and in some cases also on inclusive socio-economic development and sustainable land-use practices. In such pathways, the majority of GHG emission reductions in the land system is expected to come from low- and middle-income countries, which currently account for a large share of emissions from agriculture, forestry and other land use (AFOLU). However, in low- and middle-income countries the economic, financial and institutional barriers for such transformative changes are high. Here, we show that if sustainable development in the land sector remained highly unequal and limited to high-income countries only, global AFOLU emissions would remain substantial throughout the 21st century. Our model-based projections highlight that overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. While also a scenario purely based on either global GHG emission pricing or on inclusive socio-economic development would achieve the stringent emissions reductions required, only the latter ensures major co-benefits for other Sustainable Development Goals, especially in low- and middle-income regions.

Suggested Citation

  • Florian Humpenöder & Alexander Popp & Carl-Friedrich Schleussner & Anton Orlov & Michael Gregory Windisch & Inga Menke & Julia Pongratz & Felix Havermann & Wim Thiery & Fei Luo & Patrick v. Jeetze & J, 2022. "Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35114-7
    DOI: 10.1038/s41467-022-35114-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35114-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35114-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wolfgang Lutz & Jesus Crespo Cuaresma & Endale Kebede & Alexia Prskawetz & Warren C. Sanderson & Erich Striessnig, 2019. "Education rather than age structure brings demographic dividend," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(26), pages 12798-12803, June.
    2. Jonas Jägermeyr & Amandine Pastor & Hester Biemans & Dieter Gerten, 2017. "Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    3. Marina Andrijevic & Jesus Crespo Cuaresma & Raya Muttarak & Carl-Friedrich Schleussner, 2020. "Governance in socioeconomic pathways and its role for future adaptive capacity," Nature Sustainability, Nature, vol. 3(1), pages 35-41, January.
    4. Benjamin Leon Bodirsky & Alexander Popp & Hermann Lotze-Campen & Jan Philipp Dietrich & Susanne Rolinski & Isabelle Weindl & Christoph Schmitz & Christoph Müller & Markus Bonsch & Florian Humpenöder &, 2014. "Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    5. Anna Josephson & Talip Kilic & Jeffrey D. Michler, 2021. "Socioeconomic impacts of COVID-19 in low-income countries," Nature Human Behaviour, Nature, vol. 5(5), pages 557-565, May.
    6. Dietrich, Jan Philipp & Schmitz, Christoph & Lotze-Campen, Hermann & Popp, Alexander & Müller, Christoph, 2014. "Forecasting technological change in agriculture—An endogenous implementation in a global land use model," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 236-249.
    7. Robin Naidoo & Brendan Fisher, 2020. "Reset Sustainable Development Goals for a pandemic world," Nature, Nature, vol. 583(7815), pages 198-201, July.
    8. Tomoko Hasegawa & Shinichiro Fujimori & Stefan Frank & Florian Humpenöder & Christoph Bertram & Jacques Després & Laurent Drouet & Johannes Emmerling & Mykola Gusti & Mathijs Harmsen & Kimon Keramidas, 2021. "Land-based implications of early climate actions without global net-negative emissions," Nature Sustainability, Nature, vol. 4(12), pages 1052-1059, December.
    9. Dietrich, Jan Philipp & Schmitz, Christoph & Müller, Christoph & Fader, Marianela & Lotze-Campen, Hermann & Popp, Alexander, 2012. "Measuring agricultural land-use intensity – A global analysis using a model-assisted approach," Ecological Modelling, Elsevier, vol. 232(C), pages 109-118.
    10. Petra Hellegers, 2022. "Food security vulnerability due to trade dependencies on Russia and Ukraine," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1503-1510, December.
    11. Marina Andrijevic & Jesus Crespo Cuaresma & Tabea Lissner & Adelle Thomas & Carl-Friedrich Schleussner, 2020. "Overcoming gender inequality for climate resilient development," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    12. Dietrich, Jan Philipp & Popp, Alexander & Lotze-Campen, Hermann, 2013. "Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model," Ecological Modelling, Elsevier, vol. 263(C), pages 233-243.
    13. Steven K. Rose & Alexander Popp & Shinichiro Fujimori & Petr Havlik & John Weyant & Marshall Wise & Detlef Vuuren & Thierry Brunelle & Ryna Yiyun Cui & Vassilis Daioglou & Stefan Frank & Tomoko Hasega, 2022. "Global biomass supply modeling for long-run management of the climate system," Climatic Change, Springer, vol. 172(1), pages 1-27, May.
    14. Keywan Riahi & Christoph Bertram & Daniel Huppmann & Joeri Rogelj & Valentina Bosetti & Anique-Marie Cabardos & Andre Deppermann & Laurent Drouet & Stefan Frank & Oliver Fricko & Shinichiro Fujimori &, 2021. "Cost and attainability of meeting stringent climate targets without overshoot," Nature Climate Change, Nature, vol. 11(12), pages 1063-1069, December.
    15. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Bjoern Soergel & Elmar Kriegler & Isabelle Weindl & Sebastian Rauner & Alois Dirnaichner & Constantin Ruhe & Matthias Hofmann & Nico Bauer & Christoph Bertram & Benjamin Leon Bodirsky & Marian Leimbac, 2021. "A sustainable development pathway for climate action within the UN 2030 Agenda," Nature Climate Change, Nature, vol. 11(8), pages 656-664, August.
    3. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    5. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    6. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    7. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    8. Abhijeet Mishra & Florian Humpenöder & Galina Churkina & Christopher P. O. Reyer & Felicitas Beier & Benjamin Leon Bodirsky & Hans Joachim Schellnhuber & Hermann Lotze-Campen & Alexander Popp, 2022. "Land use change and carbon emissions of a transformation to timber cities," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Wang, Xiaoxi & Dietrich, Jan P. & Lotze-Campen, Hermann & Biewald, Anne & Stevanović, Miodrag & Bodirsky, Benjamin L. & Brümmer, Bernhard & Popp, Alexander, 2020. "Beyond land-use intensity: Assessing future global crop productivity growth under different socioeconomic pathways," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    10. Prakash Kumar Paudel & Rabin Bastola & Sanford D. Eigenbrode & Amaël Borzée & Santosh Thapa & Dana Rad & Jayaraj Vijaya Kumaran & Suganthi Appalasamy & Mohammad Mosharraf Hossain & Anirban Ash & Raju , 2022. "Perspectives of scholars on the origin, spread and consequences of COVID-19 are diverse but not polarized," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    11. Draeger, Rebecca & Cunha, Bruno S.L. & Müller-Casseres, Eduardo & Rochedo, Pedro R.R. & Szklo, Alexandre & Schaeffer, Roberto, 2022. "Stranded crude oil resources and just transition: Why do crude oil quality, climate ambitions and land-use emissions matter," Energy, Elsevier, vol. 255(C).
    12. Hualin Xie & Jinlang Zou & Hailing Jiang & Ning Zhang & Yongrok Choi, 2014. "Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis," Sustainability, MDPI, vol. 6(6), pages 1-17, May.
    13. Benjamin S. Thompson, 2023. "Impact investing in biodiversity conservation with bonds: An analysis of financial and environmental risk," Business Strategy and the Environment, Wiley Blackwell, vol. 32(1), pages 353-368, January.
    14. Wang, X. & Dietrich, J.P. & Lotze-Campen, H. & Biewald, A. & Munson, T.S. & Muller, C., 2018. "Trading More Food in the Context of High-end Climate Change: Implications for Land Displacement through Agricultural Trade," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276997, International Association of Agricultural Economists.
    15. O. Borodina, S. Kyryziuk, V. Yarovyi, Yu. Ermoliev, T. Ermolieva, 2016. "Modeling local land uses under the global climate change," Economy and Forecasting, Valeriy Heyets, issue 1, pages 117-128.
    16. Hammond, James & Siegal, Kim & Milner, Daniel & Elimu, Emmanuel & Vail, Taylor & Cathala, Paul & Gatera, Arsene & Karim, Azfar & Lee, Ja-Eun & Douxchamps, Sabine & Tu, Mai Thanh & Ouma, Emily & Lukuyu, 2022. "Perceived effects of COVID-19 restrictions on smallholder farmers: Evidence from seven lower- and middle-income countries," Agricultural Systems, Elsevier, vol. 198(C).
    17. Björn Mestdagh & Olivier Sempiga & Luc Van Liedekerke, 2023. "The Impact of External Shocks on the Sustainable Development Goals (SDGs): Linking the COVID-19 Pandemic to SDG Implementation at the Local Government Level," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    18. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    19. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35114-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.