IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4858.html
   My bibliography  Save this article

Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution

Author

Listed:
  • Benjamin Leon Bodirsky

    (Potsdam Institute for Climate Impact Research
    International Center for Tropical Agriculture)

  • Alexander Popp

    (Potsdam Institute for Climate Impact Research)

  • Hermann Lotze-Campen

    (Potsdam Institute for Climate Impact Research)

  • Jan Philipp Dietrich

    (Potsdam Institute for Climate Impact Research)

  • Susanne Rolinski

    (Potsdam Institute for Climate Impact Research)

  • Isabelle Weindl

    (Potsdam Institute for Climate Impact Research)

  • Christoph Schmitz

    (Potsdam Institute for Climate Impact Research)

  • Christoph Müller

    (Potsdam Institute for Climate Impact Research)

  • Markus Bonsch

    (Potsdam Institute for Climate Impact Research)

  • Florian Humpenöder

    (Potsdam Institute for Climate Impact Research)

  • Anne Biewald

    (Potsdam Institute for Climate Impact Research)

  • Miodrag Stevanovic

    (Potsdam Institute for Climate Impact Research)

Abstract

Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102–156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36–76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.

Suggested Citation

  • Benjamin Leon Bodirsky & Alexander Popp & Hermann Lotze-Campen & Jan Philipp Dietrich & Susanne Rolinski & Isabelle Weindl & Christoph Schmitz & Christoph Müller & Markus Bonsch & Florian Humpenöder &, 2014. "Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4858
    DOI: 10.1038/ncomms4858
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4858
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hermann Lotze‐Campen & Christoph Müller & Alberte Bondeau & Stefanie Rost & Alexander Popp & Wolfgang Lucht, 2008. "Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach," Agricultural Economics, International Association of Agricultural Economists, vol. 39(3), pages 325-338, November.
    2. Wirsenius, Stefan & Azar, Christian & Berndes, Göran, 2010. "How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030?," Agricultural Systems, Elsevier, vol. 103(9), pages 621-638, November.
    3. Nebojsa Nakicenovic & Robert Lempert & Anthony Janetos, 2014. "A Framework for the Development of New Socio-economic Scenarios for Climate Change Research: Introductory Essay," Climatic Change, Springer, vol. 122(3), pages 351-361, February.
    4. Dietrich, Jan Philipp & Schmitz, Christoph & Lotze-Campen, Hermann & Popp, Alexander & Müller, Christoph, 2014. "Forecasting technological change in agriculture—An endogenous implementation in a global land use model," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 236-249.
    5. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    6. Wilfried Winiwarter & Jan Erisman & James Galloway & Zbigniew Klimont & Mark Sutton, 2013. "Estimating environmentally relevant fixed nitrogen demand in the 21st century," Climatic Change, Springer, vol. 120(4), pages 889-901, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coppens, Joeri & Meers, Erik & Boon, Nico & Buysse, Jeroen & Vlaeminck, Siegfried E., 2016. "Follow the N and P road: High-resolution nutrient flow analysis of the Flanders region as precursor for sustainable resource management," Resources, Conservation & Recycling, Elsevier, vol. 115(C), pages 9-21.
    2. Yue, Wencong & Su, Meirong & Cai, Yanpeng & Rong, Qiangqiang & Tan, Zhenkun, 2021. "Reactive nitrogen loss from livestock-based food and biofuel production systems considering climate change and dietary transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Marco Fiorentini & Stefano Zenobi & Elisabetta Giorgini & Danilo Basili & Carla Conti & Chiara Pro & Elga Monaci & Roberto Orsini, 2019. "Nitrogen and chlorophyll status determination in durum wheat as influenced by fertilization and soil management: Preliminary results," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
    4. Massimo Zilio & Silvia Motta & Fulvia Tambone & Barbara Scaglia & Gabriele Boccasile & Andrea Squartini & Fabrizio Adani, 2020. "The distribution of functional N-cycle related genes and ammonia and nitrate nitrogen in soil profiles fertilized with mineral and organic N fertilizer," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    5. Liu, Min & Xu, Wenli & Zhang, Hangyu & Chen, Huang & Bie, Qiang & Han, Guodong & Yu, Xiaohua, 2022. "Livestock production, greenhouse gas emissions, air pollution, and grassland conservation: Quasi-natural experimental evidence," MPRA Paper 115704, University Library of Munich, Germany.
    6. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    7. Beck, M Bruce & Chen, Chen & Walker, Rodrigo Villarroel & Wen, Zongguo & Han, Jiangxue, 2023. "Multi-sectoral analysis of smarter urban nitrogen metabolism: A case study of Suzhou, China," Ecological Modelling, Elsevier, vol. 478(C).
    8. Chiara Pro & Danilo Basili & Valentina Notarstefano & Alessia Belloni & Marco Fiorentini & Stefano Zenobi & Sonila Alia & Arianna Vignini & Roberto Orsini & Elisabetta Giorgini, 2021. "A Spectroscopic Approach to Evaluate the Effects of Different Soil Tillage Methods and Nitrogen Fertilization Levels on the Biochemical Composition of Durum Wheat ( Triticum turgidum subsp. durum ) Le," Agriculture, MDPI, vol. 11(4), pages 1-15, April.
    9. Dominic Lemken & Mandy Knigge & Stephan Meyerding & Achim Spiller, 2017. "The Value of Environmental and Health Claims on New Legume Products: A Non-Hypothetical Online Auction," Sustainability, MDPI, vol. 9(8), pages 1-18, July.
    10. Javier Martínez-Dalmau & Julio Berbel & Rafaela Ordóñez-Fernández, 2021. "Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    11. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    12. Eric A. Davidson & Rachel L. Nifong & Richard B. Ferguson & Cheryl Palm & Deanna L. Osmond & Jill S. Baron, 2016. "Nutrients in the nexus," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 25-38, March.
    13. Wei, Zhibiao & Zhuang, Minghao & Hellegers, Petra & Cui, Zhenling & Hoffland, Ellis, 2023. "Towards circular nitrogen use in the agri-food system at village and county level in China," Agricultural Systems, Elsevier, vol. 209(C).
    14. Florian Humpenöder & Alexander Popp & Carl-Friedrich Schleussner & Anton Orlov & Michael Gregory Windisch & Inga Menke & Julia Pongratz & Felix Havermann & Wim Thiery & Fei Luo & Patrick v. Jeetze & J, 2022. "Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Tomoko Hasegawa & Ronald D. Sands & Thierry Brunelle & Yiyun Cui & Stefan Frank & Shinichiro Fujimori & Alexander Popp, 2020. "Food security under high bioenergy demand toward long-term climate goals," Climatic Change, Springer, vol. 163(3), pages 1587-1601, December.
    16. Mengru Wang & Benjamin Leon Bodirsky & Rhodé Rijneveld & Felicitas Beier & Mirjam P. Bak & Masooma Batool & Bram Droppers & Alexander Popp & Michelle T. H. Vliet & Maryna Strokal, 2024. "A triple increase in global river basins with water scarcity due to future pollution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Bowles, Nicholas & Alexander, Samuel & Hadjikakou, Michalis, 2019. "The livestock sector and planetary boundaries: A ‘limits to growth’ perspective with dietary implications," Ecological Economics, Elsevier, vol. 160(C), pages 128-136.
    18. Johne, Clara & Schröder, Enno & Ward, Hauke, 2023. "The distributional effects of a nitrogen tax: Evidence from Germany," Ecological Economics, Elsevier, vol. 208(C).
    19. Fernandez-Mena, Hugo & Gaudou, Benoit & Pellerin, Sylvain & MacDonald, Graham K. & Nesme, Thomas, 2020. "Flows in Agro-food Networks (FAN): An agent-based model to simulate local agricultural material flows," Agricultural Systems, Elsevier, vol. 180(C).
    20. Jian Zhou & Shan Jiang & Sanjit Kumar Mondal & Jinlong Huang & Buda Su & Zbigniew W. Kundzewicz & Ziyan Chen & Runhong Xu & Tong Jiang, 2022. "China’s Socioeconomic and CO 2 Status Concerning Future Land-Use Change under the Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 14(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    2. Thomas W. Hertel & Uris Lantz C. Baldos & Dominique van der Mensbrugghe, 2016. "Predicting Long-Term Food Demand, Cropland Use, and Prices," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 417-441, October.
    3. Benjamin Leon Bodirsky & Susanne Rolinski & Anne Biewald & Isabelle Weindl & Alexander Popp & Hermann Lotze-Campen, 2015. "Global Food Demand Scenarios for the 21st Century," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-27, November.
    4. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    6. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    7. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    8. Wang, Xiaoxi & Dietrich, Jan P. & Lotze-Campen, Hermann & Biewald, Anne & Stevanović, Miodrag & Bodirsky, Benjamin L. & Brümmer, Bernhard & Popp, Alexander, 2020. "Beyond land-use intensity: Assessing future global crop productivity growth under different socioeconomic pathways," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    9. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    10. Food and Agricultural Organization [FAO], 2016. "Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade," Working Papers id:8512, eSocialSciences.
    11. John T. Saunders & Marcel Adenäuer & Jonathan Brooks, 2019. "Analysis of long-term challenges for agricultural markets," OECD Food, Agriculture and Fisheries Papers 131, OECD Publishing.
    12. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    13. Mohammad Zarei & Abdolsamad K. Amirkolaei & Jesse T. Trushenski & Wendy M. Sealey & Michael H. Schwarz & Reza Ovissipour, 2022. "Sorghum as a Potential Valuable Aquafeed Ingredient: Nutritional Quality and Digestibility," Agriculture, MDPI, vol. 12(5), pages 1-17, May.
    14. Wang, X. & Dietrich, J.P. & Lotze-Campen, H. & Biewald, A. & Munson, T.S. & Muller, C., 2018. "Trading More Food in the Context of High-end Climate Change: Implications for Land Displacement through Agricultural Trade," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276997, International Association of Agricultural Economists.
    15. O. Borodina, S. Kyryziuk, V. Yarovyi, Yu. Ermoliev, T. Ermolieva, 2016. "Modeling local land uses under the global climate change," Economy and Forecasting, Valeriy Heyets, issue 1, pages 117-128.
    16. Lochhead, Kyle & Ghafghazi, Saeed & Havlik, Petr & Forsell, Nicklas & Obersteiner, Michael & Bull, Gary & Mabee, Warren, 2016. "Price trends and volatility scenarios for designing forest sector transformation," Energy Economics, Elsevier, vol. 57(C), pages 184-191.
    17. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    18. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    19. Huanyu Chang & Bing Zhang & Jingyan Han & Yong Zhao & Yongqiang Cao & Jiaqi Yao & Linrui Shi, 2024. "Evaluation of the Coupling Coordination and Sustainable Development of Water–Energy–Land–Food System on a 40-Year Scale: A Case Study of Hebei, China," Land, MDPI, vol. 13(7), pages 1-21, July.
    20. Weizhong Su & Gaobin Ye, 2014. "Differences of Soil Fertility in Farmland Occupation and Supplement Areas in the Taihu Lake Watershed during 1985–2010," IJERPH, MDPI, vol. 11(6), pages 1-15, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.