IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i4p321-d530783.html
   My bibliography  Save this article

A Spectroscopic Approach to Evaluate the Effects of Different Soil Tillage Methods and Nitrogen Fertilization Levels on the Biochemical Composition of Durum Wheat ( Triticum turgidum subsp. durum ) Leaves and Caryopses

Author

Listed:
  • Chiara Pro

    (Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
    These authors equally contributed to this work.)

  • Danilo Basili

    (Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
    These authors equally contributed to this work.
    Current address: Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.)

  • Valentina Notarstefano

    (Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy)

  • Alessia Belloni

    (Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy)

  • Marco Fiorentini

    (Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy)

  • Stefano Zenobi

    (Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy)

  • Sonila Alia

    (Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60131 Ancona, Italy)

  • Arianna Vignini

    (Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60131 Ancona, Italy)

  • Roberto Orsini

    (Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy)

  • Elisabetta Giorgini

    (Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy)

Abstract

The agricultural sector is required to produce food at the same pace as population growth, while accounting for pollution and costs. For this reason, conservative agricultural practices have been employed worldwide. Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectroscopy has the ability to provide a snapshot of the macromolecular composition of a sample in a timely and cost-effective way and it has been widely applied in the field of agriculture to assess food quality. The aim of this study was to exploit ATR-FTIR spectroscopy to assess the impact of different soil tillage methods (conventional tillage, CT; minimum tillage, MT, and no tillage, NT) and nitrogen fertilization levels (0, 90 and 180 kg N ha −1 ) on the macromolecular composition of leaves and caryopses of durum wheat ( Triticum turgidum subsp. durum ). The analysis of the spectral data revealed that the quality of durum wheat, in terms of protein content, grown on soil with no tillage was not reduced. Indeed, with regards to caryopses, the different tillage methods influenced only the lipid and hemicellulose content, whereas the macromolecular composition of leaves was sensitive to tillage methods mostly during the early stage of growth. Moreover, no relevant effects were found in leaves and caryopses when different fertilizer concentrations were used. These results provide important knowledge supporting the adoption of both no-tillage soil treatments and reduced fertilization dosage for the development of durum wheat management strategies and support the use of spectroscopy for conservative agriculture practices.

Suggested Citation

  • Chiara Pro & Danilo Basili & Valentina Notarstefano & Alessia Belloni & Marco Fiorentini & Stefano Zenobi & Sonila Alia & Arianna Vignini & Roberto Orsini & Elisabetta Giorgini, 2021. "A Spectroscopic Approach to Evaluate the Effects of Different Soil Tillage Methods and Nitrogen Fertilization Levels on the Biochemical Composition of Durum Wheat ( Triticum turgidum subsp. durum ) Le," Agriculture, MDPI, vol. 11(4), pages 1-15, April.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:321-:d:530783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/4/321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/4/321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Leon Bodirsky & Alexander Popp & Hermann Lotze-Campen & Jan Philipp Dietrich & Susanne Rolinski & Isabelle Weindl & Christoph Schmitz & Christoph Müller & Markus Bonsch & Florian Humpenöder &, 2014. "Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    2. Marco Fiorentini & Stefano Zenobi & Roberto Orsini, 2021. "Remote and Proximal Sensing Applications for Durum Wheat Nutritional Status Detection in Mediterranean Area," Agriculture, MDPI, vol. 11(1), pages 1-18, January.
    3. Marco Fiorentini & Stefano Zenobi & Elisabetta Giorgini & Danilo Basili & Carla Conti & Chiara Pro & Elga Monaci & Roberto Orsini, 2019. "Nitrogen and chlorophyll status determination in durum wheat as influenced by fertilization and soil management: Preliminary results," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
    4. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    3. Nana Chen & Xin Zhao & Shuxian Dou & Aixing Deng & Chengyan Zheng & Tiehua Cao & Zhenwei Song & Weijian Zhang, 2023. "The Tradeoff between Maintaining Maize ( Zea mays L.) Productivity and Improving Soil Quality under Conservation Tillage Practice in Semi-Arid Region of Northeast China," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
    4. J. Carl Ureta & Lucas Clay & Marzieh Motallebi & Joan Ureta, 2020. "Quantifying the Landscape’s Ecological Benefits—An Analysis of the Effect of Land Cover Change on Ecosystem Services," Land, MDPI, vol. 10(1), pages 1-20, December.
    5. Dominic Lemken & Mandy Knigge & Stephan Meyerding & Achim Spiller, 2017. "The Value of Environmental and Health Claims on New Legume Products: A Non-Hypothetical Online Auction," Sustainability, MDPI, vol. 9(8), pages 1-18, July.
    6. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    7. Florian Humpenöder & Alexander Popp & Carl-Friedrich Schleussner & Anton Orlov & Michael Gregory Windisch & Inga Menke & Julia Pongratz & Felix Havermann & Wim Thiery & Fei Luo & Patrick v. Jeetze & J, 2022. "Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Luís Silva & Luís Alcino Conceição & Fernando Cebola Lidon & Benvindo Maçãs, 2023. "Remote Monitoring of Crop Nitrogen Nutrition to Adjust Crop Models: A Review," Agriculture, MDPI, vol. 13(4), pages 1-23, April.
    9. Tomoko Hasegawa & Ronald D. Sands & Thierry Brunelle & Yiyun Cui & Stefan Frank & Shinichiro Fujimori & Alexander Popp, 2020. "Food security under high bioenergy demand toward long-term climate goals," Climatic Change, Springer, vol. 163(3), pages 1587-1601, December.
    10. Anantha, K.H. & Garg, Kaushal K. & Barron, Jennie & Dixit, Sreenath & Venkataradha, A. & Singh, Ramesh & Whitbread, Anthony M., 2021. "Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia," Agricultural Systems, Elsevier, vol. 194(C).
    11. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    13. Katharina Helming & Katrin Daedlow & Bernd Hansjürgens & Thomas Koellner, 2018. "Assessment and Governance of Sustainable Soil Management," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    14. Heena Panchasara & Nahidul Hoque Samrat & Nahina Islam, 2021. "Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review," Agriculture, MDPI, vol. 11(2), pages 1-16, January.
    15. Bacar Abdallah Abderemane & Malika Fakiri & Omar Idrissi & Aziz Baidani & Abdelmonim Zeroual & Elisabetta Mazzucotelli & Hakan Özkan & Ilaria Marcotuli & Agata Gadaleta & Chafika Houasli, 2023. "Evaluation of the Productive Potential of a World Collection of Chickpeas ( Cicer arietinum L.) for the Initiation of Breeding Programs for Adaptation to Conservation Agriculture," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    16. Lalani, Baqir & Aminpour, Payam & Gray, Steven & Williams, Meredith & Büchi, Lucie & Haggar, Jeremy & Grabowski, Philip & Dambiro, José, 2021. "Mapping farmer perceptions, Conservation Agriculture practices and on-farm measurements: The role of systems thinking in the process of adoption," Agricultural Systems, Elsevier, vol. 191(C).
    17. Kumara, T.M. Kiran & Kandpal, Ankita & Pal, Suresh, 2019. "Determinants and Impacts of Conservation Agriculture in South Asia: A Meta-Analysis of the Evidences," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 74(03), March.
    18. Tambo, J. & Mockshell, J., 2018. "Differential impacts of conservation agriculture technology options on household welfare in sub-Saharan Africa," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277035, International Association of Agricultural Economists.
    19. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    20. Dazhuan Ge & Hualou Long & Li Ma & Yingnan Zhang & Shuangshuang Tu, 2017. "Analysis Framework of China’s Grain Production System: A Spatial Resilience Perspective," Sustainability, MDPI, vol. 9(12), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:321-:d:530783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.