IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v172y2022i1d10.1007_s10584-022-03336-9.html
   My bibliography  Save this article

Global biomass supply modeling for long-run management of the climate system

Author

Listed:
  • Steven K. Rose

    (Electric Power Research Institute)

  • Alexander Popp

    (Potsdam Institute for Climate Impact Research, Leibniz Association)

  • Shinichiro Fujimori

    (Kyoto University
    National Institute for Environmental Studies
    International Institute for Applied Systems Analysis)

  • Petr Havlik

    (International Institute for Applied Systems Analysis)

  • John Weyant

    (Stanford University)

  • Marshall Wise

    (Joint Global Change Research Institute, Univ. of Maryland)

  • Detlef Vuuren

    (PBL Netherlands Environmental Assessment Agency
    Copernicus Institute of Sustainable Development, Utrecht University)

  • Thierry Brunelle

    (CIRAD)

  • Ryna Yiyun Cui

    (University of Maryland)

  • Vassilis Daioglou

    (PBL Netherlands Environmental Assessment Agency
    Copernicus Institute of Sustainable Development, Utrecht University)

  • Stefan Frank

    (International Institute for Applied Systems Analysis)

  • Tomoko Hasegawa

    (Ritsumeikan University)

  • Florian Humpenöder

    (Potsdam Institute for Climate Impact Research, Leibniz Association)

  • Etsushi Kato

    (The Institute of Applied Energy)

  • Ronald D. Sands

    (USDA Economic Research Service)

  • Fuminori Sano

    (Research Institute of Innovative Technology for the Earth)

  • Junichi Tsutsui

    (Central Research Institute of Electric Power Industry)

  • Jonathan Doelman

    (PBL Netherlands Environmental Assessment Agency
    Copernicus Institute of Sustainable Development, Utrecht University)

  • Matteo Muratori

    (National Renewable Energy Laboratory)

  • Rémi Prudhomme

    (CIRAD)

  • Kenichi Wada

    (Research Institute of Innovative Technology for the Earth)

  • Hiromi Yamamoto

    (Central Research Institute of Electric Power Industry)

Abstract

Bioenergy is projected to have a prominent, valuable, and maybe essential, role in climate management. However, there is significant variation in projected bioenergy deployment results, as well as concerns about the potential environmental and social implications of supplying biomass. Bioenergy deployment projections are market equilibrium solutions from integrated modeling, yet little is known about the underlying modeling of the supply of biomass as a feedstock for energy use in these modeling frameworks. We undertake a novel diagnostic analysis with ten global models to elucidate, compare, and assess how biomass is supplied within the models used to inform long-run climate management. With experiments that isolate and reveal biomass supply modeling behavior and characteristics (costs, emissions, land use, market effects), we learn about biomass supply tendencies and differences. The insights provide a new level of modeling transparency and understanding of estimated global biomass supplies that informs evaluation of the potential for bioenergy in managing the climate and interpretation of integrated modeling. For each model, we characterize the potential distributions of global biomass supply across regions and feedstock types for increasing levels of quantity supplied, as well as some of the potential societal externalities of supplying biomass. We also evaluate the biomass supply implications of managing these externalities. Finally, we interpret biomass market results from integrated modeling in terms of our new understanding of biomass supply. Overall, we find little consensus between models on where biomass could be cost-effectively produced and the implications. We also reveal model specific biomass supply narratives, with results providing new insights into integrated modeling bioenergy outcomes and differences. The analysis finds that many integrated models are considering and managing emissions and land use externalities of supplying biomass and estimating that environmental and societal trade-offs in the form of land emissions, land conversion, and higher agricultural prices are cost-effective, and to some degree a reality of using biomass, to address climate change.

Suggested Citation

  • Steven K. Rose & Alexander Popp & Shinichiro Fujimori & Petr Havlik & John Weyant & Marshall Wise & Detlef Vuuren & Thierry Brunelle & Ryna Yiyun Cui & Vassilis Daioglou & Stefan Frank & Tomoko Hasega, 2022. "Global biomass supply modeling for long-run management of the climate system," Climatic Change, Springer, vol. 172(1), pages 1-27, May.
  • Handle: RePEc:spr:climat:v:172:y:2022:i:1:d:10.1007_s10584-022-03336-9
    DOI: 10.1007/s10584-022-03336-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-022-03336-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-022-03336-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katherine Calvin & Marshall Wise & Page Kyle & Pralit Patel & Leon Clarke & Jae Edmonds, 2014. "Trade-offs of different land and bioenergy policies on the path to achieving climate targets," Climatic Change, Springer, vol. 123(3), pages 691-704, April.
    2. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    2. Florian Humpenöder & Alexander Popp & Carl-Friedrich Schleussner & Anton Orlov & Michael Gregory Windisch & Inga Menke & Julia Pongratz & Felix Havermann & Wim Thiery & Fei Luo & Patrick v. Jeetze & J, 2022. "Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Aiping & Gao, Ji & Quan, Jinling & Zhou, Bo & Lam, Shu Kee & Zhou, Yuyu & Lin, Erda & Jiang, Kejun & Clarke, Leon E. & Zhang, Xuesong & Yu, Sha & Kyle, G.P. & Li, Hongbo & Zhou, Sheng & Gao, Sh, 2021. "The implications for energy crops under China's climate change challenges," Energy Economics, Elsevier, vol. 96(C).
    2. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    3. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    4. Wang Lu & Pietro Bartocci & Alberto Abad & Aldo Bischi & Haiping Yang & Arturo Cabello & Margarita de Las Obras Loscertales & Mauro Zampilli & Francesco Fantozzi, 2023. "Dimensioning Air Reactor and Fuel Reactor of a Pressurized CLC Plant to Be Coupled to a Gas Turbine: Part 2, the Fuel Reactor," Energies, MDPI, vol. 16(9), pages 1-16, April.
    5. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    8. Lars Nilsson, 2018. "Reflections on the Economic Modelling of Free Trade Agreements," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(1), pages 156-186, June.
    9. Holly Jean Buck, 2016. "Rapid scale-up of negative emissions technologies: social barriers and social implications," Climatic Change, Springer, vol. 139(2), pages 155-167, November.
    10. Rong Tang & Jing Zhao & Yifan Liu & Xin Huang & Yanxu Zhang & Derong Zhou & Aijun Ding & Chris P. Nielsen & Haikun Wang, 2022. "Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    12. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    13. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    14. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Frederick Ploeg, 2018. "The safe carbon budget," Climatic Change, Springer, vol. 147(1), pages 47-59, March.
    16. Tiphaine Chevallier & Maud Loireau & Romain Courault & lydie chapuis-lardy & Thierry Desjardins & Cécile Gomez & Alexandre Grondin & Frédéric Guérin & Didier Orange & Raphaël Pélissier & Georges Serpa, 2020. "Paris climate agreement: Promoting interdisciplinary science and stakeholders' approaches for multi-scale implementation of continental carbon sequestration," ULB Institutional Repository 2013/312984, ULB -- Universite Libre de Bruxelles.
    17. Dumas, Patrice & Wirsenius, Stefan & Searchinger, Tim & Andrieu, Nadine & Vogt-Schilb, Adrien, 2022. "Options to achieve net-zero emissions from agriculture and land use changes in Latin America and the Caribbean," IDB Publications (Working Papers) 12385, Inter-American Development Bank.
    18. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    19. Austin, K.G. & Jones, J.P.H. & Clark, C.M., 2022. "A review of domestic land use change attributable to U.S. biofuel policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Winchester, Niven & Reilly, John M., 2015. "The feasibility, costs, and environmental implications of large-scale biomass energy," Energy Economics, Elsevier, vol. 51(C), pages 188-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:172:y:2022:i:1:d:10.1007_s10584-022-03336-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.