IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4117-d1394561.html
   My bibliography  Save this article

An Overview of Waste-to-Energy Incineration Integrated with Carbon Capture Utilization or Storage Retrofit Application

Author

Listed:
  • Michele Bertone

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy)

  • Luca Stabile

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy)

  • Giorgio Buonanno

    (Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, 03043 Cassino, Italy
    International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4000, Australia)

Abstract

This paper provides an overview of the integration of Carbon Capture, Utilization, or Storage (CCUS) technologies with Waste-to-Energy (WtE) incineration plants in retrofit applications. It explains the operational principles of WtE incineration, including the generation of both biogenic and fossil CO 2 emissions and the potential for CCUS technologies to mitigate these emissions. In addition, the paper covers the regulatory framework influencing the adoption of such technologies and highlights the recent Directive 2023/959 for the inclusion of WtE incinerators in the European Union Emissions Trading System (EU ETS) by 2028. This measure could provide a significant impulse for the integration of CCUS in WtE incineration plants. Moreover, it discusses the use of CO 2 captured, which could be used in Carbon Capture and Storage (CCS) and Carbon Capture and Utilization (CCU), and offers a comparison of the CCUS projects that have already been implemented worldwide, with a focus on the Netherlands and Italy. It illustrates the Netherlands’ advantageous position due to its developed CO 2 market and early CCUS adoption, compared to Italy’s emerging market and initial storage solutions.

Suggested Citation

  • Michele Bertone & Luca Stabile & Giorgio Buonanno, 2024. "An Overview of Waste-to-Energy Incineration Integrated with Carbon Capture Utilization or Storage Retrofit Application," Sustainability, MDPI, vol. 16(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4117-:d:1394561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    2. Jouhara, H. & Czajczyńska, D. & Ghazal, H. & Krzyżyńska, R. & Anguilano, L. & Reynolds, A.J. & Spencer, N., 2017. "Municipal waste management systems for domestic use," Energy, Elsevier, vol. 139(C), pages 485-506.
    3. Stefan Bringezu, 2014. "Carbon Recycling for Renewable Materials and Energy Supply," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 327-340, May.
    4. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    5. Luo, Xiaobo & Wang, Meihong & Oko, Eni & Okezue, Chima, 2014. "Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network," Applied Energy, Elsevier, vol. 132(C), pages 610-620.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Jurczyk & Marian Banaś & Tadeusz Pająk & Krzysztof Dziedzic & Bogusława Łapczyńska-Kordon & Marcin Jewiarz, 2024. "The Influence of Selected Parameters of the Mathematical Model on the Simulation Performance of a Municipal Waste-to-Energy Plant Absorber," Energies, MDPI, vol. 17(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Bertone & Luca Stabile & Gino Cortellessa & Fausto Arpino & Giorgio Buonanno, 2024. "Techno-Economic Assessment of Amine-Based Carbon Capture in Waste-to-Energy Incineration Plant Retrofit," Sustainability, MDPI, vol. 16(19), pages 1-17, September.
    2. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    3. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    4. Sanjay RODE, 2020. "Population Growth And Bottlenecks In Provision Of Qualitative Public Infrastructure Services In Thane Municipal Corporation," Business Excellence and Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 10(4), pages 94-115, December.
    5. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    6. Kung, Kevin S. & Thengane, Sonal K. & Ghoniem, Ahmed F. & Lim, C. Jim & Cao, Yankai & Sokhansanj, Shahabaddine, 2022. "Start-up, shutdown, and transition timescale analysis in biomass reactor operations," Energy, Elsevier, vol. 248(C).
    7. Holly Jean Buck, 2016. "Rapid scale-up of negative emissions technologies: social barriers and social implications," Climatic Change, Springer, vol. 139(2), pages 155-167, November.
    8. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    9. Emily Ho & David V. Budescu & Valentina Bosetti & Detlef P. Vuuren & Klaus Keller, 2019. "Not all carbon dioxide emission scenarios are equally likely: a subjective expert assessment," Climatic Change, Springer, vol. 155(4), pages 545-561, August.
    10. Gabriella Esposito De Vita & Cristina Visconti & Gantuya Ganbat & Marina Rigillo, 2023. "A Collaborative Approach for Triggering Environmental Awareness: The 3Rs for Sustainable Use of Natural Resources in Ulaanbaatar (3R4UB)," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    11. Frederick Ploeg, 2018. "The safe carbon budget," Climatic Change, Springer, vol. 147(1), pages 47-59, March.
    12. Tiphaine Chevallier & Maud Loireau & Romain Courault & lydie chapuis-lardy & Thierry Desjardins & Cécile Gomez & Alexandre Grondin & Frédéric Guérin & Didier Orange & Raphaël Pélissier & Georges Serpa, 2020. "Paris climate agreement: Promoting interdisciplinary science and stakeholders' approaches for multi-scale implementation of continental carbon sequestration," ULB Institutional Repository 2013/312984, ULB -- Universite Libre de Bruxelles.
    13. Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
    14. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    15. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Parisa, Zack & Marland, Eric & Sohngen, Brent & Marland, Gregg & Jenkins, Jennifer, 2022. "The time value of carbon storage," Forest Policy and Economics, Elsevier, vol. 144(C).
    17. Balint Simon, 2023. "Material flows and embodied energy of direct air capture: A cradle‐to‐gate inventory of selected technologies," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 646-661, June.
    18. Christoph Görg & Ulrich Brand & Helmut Haberl & Diana Hummel & Thomas Jahn & Stefan Liehr, 2017. "Challenges for Social-Ecological Transformations: Contributions from Social and Political Ecology," Sustainability, MDPI, vol. 9(7), pages 1-21, June.
    19. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
    20. Zou, Huihuang & Liu, Chao & Evrendilek, Fatih & He, Yao & Liu, Jingyong, 2021. "Evaluation of reaction mechanisms and emissions of oily sludge and coal co-combustions in O2/CO2 and O2/N2 atmospheres," Renewable Energy, Elsevier, vol. 171(C), pages 1327-1343.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4117-:d:1394561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.