IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v27y2023i3p646-661.html
   My bibliography  Save this article

Material flows and embodied energy of direct air capture: A cradle‐to‐gate inventory of selected technologies

Author

Listed:
  • Balint Simon

Abstract

Direct air capture (DAC) is an essential nexus of CO2 chemistry and climate mitigation. Life cycle assessment (LCA) is often used to validate the environmental potential of emerging technologies. Consequently, an increased number of ex ante LCAs is expected in this field. However, a comprehensive description through parameterized modeling of life cycle inventories of distinct technological pathways, which is essential for transparency, has recently been missing from the international literature. To fill this gap, the present study analyzes three selected DAC technologies to create an inventory. Amine‐based adsorption and absorption, as well as alkali‐based absorption, were modeled. The energy consumption of the operation, cradle‐to‐gate embodied energy, and sensitivity analysis based on parameter variations were carried out. The “cradle‐to‐gate” energy requirement of direct air capture (DAC) often lies in the range or above the formation energy of CO2 (8.94 GJ energy can be obtained by formation of 1 t CO2 from elementary C and O2). This indicates that theoretically more energy is required for capture, as can be obtained during the formation of CO2. Because energy has continuously growing economic and ecological value, this energy intensity of DAC implies that DAC might have important role in CCU to add directly measurable economic value. The parametrized model includes over 60 parameters, resulting in an array of possible energy and material requirements. The use of this wide range of figures in life cycle assessment (LCA) sheds light on real opportunities for DAC in future product systems. The option of varying parameters enables the tailoring of the calculation to a particular situation or design. In this way, the calculator offers a common base for LCA, fostering an early stage analysis of DAC technologies.

Suggested Citation

  • Balint Simon, 2023. "Material flows and embodied energy of direct air capture: A cradle‐to‐gate inventory of selected technologies," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 646-661, June.
  • Handle: RePEc:bla:inecol:v:27:y:2023:i:3:p:646-661
    DOI: 10.1111/jiec.13357
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13357
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sheikh Moniruzzaman Moni & Roksana Mahmud & Karen High & Michael Carbajales‐Dale, 2020. "Life cycle assessment of emerging technologies: A review," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 52-63, February.
    2. Krekel, Daniel & Samsun, Remzi Can & Peters, Ralf & Stolten, Detlef, 2018. "The separation of CO2 from ambient air – A techno-economic assessment," Applied Energy, Elsevier, vol. 218(C), pages 361-381.
    3. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    4. Stefan Bringezu, 2014. "Carbon Recycling for Renewable Materials and Energy Supply," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 327-340, May.
    5. Sarah Deutz & André Bardow, 2021. "Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption," Nature Energy, Nature, vol. 6(2), pages 203-213, February.
    6. David Laner & Julia Feketitsch & Helmut Rechberger & Johann Fellner, 2016. "A Novel Approach to Characterize Data Uncertainty in Material Flow Analysis and its Application to Plastics Flows in Austria," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1050-1063, October.
    7. David Keith & Minh Ha-Duong & Joshua K. Stolaroff, 2006. "Climate strategy with CO2 capture from the air," Post-Print halshs-00003926, HAL.
    8. Peter Viebahn & Alexander Scholz & Ole Zelt, 2019. "The Potential Role of Direct Air Capture in the German Energy Research Program—Results of a Multi-Dimensional Analysis," Energies, MDPI, vol. 12(18), pages 1-27, September.
    9. Azarabadi, Habib & Lackner, Klaus S., 2019. "A sorbent-focused techno-economic analysis of direct air capture," Applied Energy, Elsevier, vol. 250(C), pages 959-975.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Keju & Farooqui, Azharuddin & McCoy, Sean T., 2022. "The impact of climate on solvent-based direct air capture systems," Applied Energy, Elsevier, vol. 325(C).
    2. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    3. Sina Hoseinpoori & David Pallarès & Filip Johnsson & Henrik Thunman, 2023. "A comparative exergy-based assessment of direct air capture technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(7), pages 1-20, October.
    4. Enric Prats-Salvado & Nathalie Monnerie & Christian Sattler, 2021. "Synergies between Direct Air Capture Technologies and Solar Thermochemical Cycles in the Production of Methanol," Energies, MDPI, vol. 14(16), pages 1-21, August.
    5. Li, Canbing & Shi, Haiqing & Cao, Yijia & Kuang, Yonghong & Zhang, Yongjun & Gao, Dan & Sun, Liang, 2015. "Modeling and optimal operation of carbon capture from the air driven by intermittent and volatile wind power," Energy, Elsevier, vol. 87(C), pages 201-211.
    6. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    7. Lee, Sung-Wook & Park, Jong-Soo & Lee, Chun-Boo & Lee, Dong-Wook & Kim, Hakjoo & Ra, Ho Won & Kim, Sung-Hyun & Ryi, Shin-Kun, 2014. "H2 recovery and CO2 capture after water–gas shift reactor using synthesis gas from coal gasification," Energy, Elsevier, vol. 66(C), pages 635-642.
    8. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    9. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    10. Azarabadi, Habib & Lackner, Klaus S., 2019. "A sorbent-focused techno-economic analysis of direct air capture," Applied Energy, Elsevier, vol. 250(C), pages 959-975.
    11. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    12. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    13. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    14. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    15. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    16. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    17. Celia Sabando-Fraile & Marina Corral-Bobadilla & Rubén Lostado-Lorza & Fátima Somovilla-Gomez, 2023. "Multiresponse Performance Evaluation and Life Cycle Assessment for the Optimal Elimination of Pb (II) from Industrial Wastewater by Adsorption Using Vine Shoot Activated Carbon," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    18. Stefan Bringezu, 2019. "Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use," Resources, MDPI, vol. 8(3), pages 1-21, August.
    19. Nguyet Thi Tran & Dirk Weichgrebe, 2020. "Regional material flow behaviors of agro‐food processing craft villages in Red River Delta, Vietnam," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 707-725, June.
    20. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:27:y:2023:i:3:p:646-661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.