IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v18y2014i3p327-340.html
   My bibliography  Save this article

Carbon Recycling for Renewable Materials and Energy Supply

Author

Listed:
  • Stefan Bringezu

Abstract

type="main"> The current flow of carbon for the production, use, and waste management of polymer-based products is still mostly linear from the lithosphere to the atmosphere with rather low rates of material recycling. In view of a limited future supply of biomass, this article outlines the options to further develop carbon recycling (C-REC). The focus is on carbon dioxide (CO 2 ) capture and use for synthesis of platform chemicals to produce polymers. CO 2 may be captured from exhaust gases after combustion or fermentation of waste in order to establish a C-REC system within the technosphere. As a long-term option, an external C-REC system can be developed by capturing atmospheric CO 2 . A central role may be expected from renewable methane (or synthetic natural gas), which is increasingly being used for storage and transport of energy, but may also be used for renewable carbon supply for chemistry. The energy input for the C-REC processes can come from wind and solar systems, in particular, power for the production of hydrogen, which is combined with CO 2 to produce various hydrocarbons. Most of the technological components for the system already exist, and, first modules for renewable fuel and polymer production systems are underway in Germany. This article outlines how the system may further develop over the medium to long term, from a piggy-back add-on flow system toward a self-carrying recycling system, which has the potential to provide the material and energy backbone of future societies. A critical bottleneck seems to be the capacity and costs of renewable energy supply, rather than the costs of carbon capture.

Suggested Citation

  • Stefan Bringezu, 2014. "Carbon Recycling for Renewable Materials and Energy Supply," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 327-340, May.
  • Handle: RePEc:bla:inecol:v:18:y:2014:i:3:p:327-340
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jiec.12099
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    2. Henriette Naims, 2020. "Economic aspirations connected to innovations in carbon capture and utilization value chains," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1126-1139, October.
    3. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    4. Wieland Hoppe & Stefan Bringezu, 2016. "Vergleichende Ökobilanz der CO2-basierten und konventionellen Methan- und Methanolproduktion," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 24(1), pages 43-47, June.
    5. Bhumika Gupta & Salil K. Sen, 2019. "Carbon capture usage and storage with scale-up : energy finance through bricolage deploying the co-integration methodology," Post-Print hal-02559884, HAL.
    6. Stefan Bringezu, 2019. "Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use," Resources, MDPI, vol. 8(3), pages 1-21, August.
    7. Rolf Meyer, 2017. "Bioeconomy Strategies: Contexts, Visions, Guiding Implementation Principles and Resulting Debates," Sustainability, MDPI, vol. 9(6), pages 1-32, June.
    8. Balint Simon, 2023. "Material flows and embodied energy of direct air capture: A cradle‐to‐gate inventory of selected technologies," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 646-661, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:18:y:2014:i:3:p:327-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.