IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v218y2018icp361-381.html
   My bibliography  Save this article

The separation of CO2 from ambient air – A techno-economic assessment

Author

Listed:
  • Krekel, Daniel
  • Samsun, Remzi Can
  • Peters, Ralf
  • Stolten, Detlef

Abstract

This paper assesses the separation of CO2 from ambient air from a technical and economic standpoint. Reducing CO2 emissions and their sequestration from the atmosphere is vital to counteract ongoing climate change. The most promising technological options for CO2 separation are first identified by reviewing the literature and comparing the most important technical and economic parameters. The results point to amines/imines as adsorbing agents to separate CO2 from ambient air. A system layout is then designed and a technical analysis conducted by solving mass and energy balances for each component. An economic analysis is then performed by applying a specifically-developed model. The total energy demand of the system discussed here is calculated as 3.65 GJ/tCO2. This high energy demand mainly derives from the system-specific implementation of two compressors that compress air/CO2 and overcome the pressure losses. The second-law efficiency calculated ranges of 7.52–11.83 %, depending on the option of heat integration. The costs of avoiding CO2 emissions vary between $ 824 and 1333/tCO2, depending on the energy source applied. The results of this work present higher values for energy demand and costs compared to other values stated in literature. The reasons for this deviation are often insufficient and overoptimistic assumptions in other literature on the one hand, but also relate to the specific system design investigated in this paper on the other. Further case studies reveal that enormous land requirements and investments would be needed to reduce potential CO2 quantities in the atmosphere to contemporary levels. A comparison between CO2 removal from the atmosphere and carbon capture and storage technology for coal power plants shows that this technology is not yet able to economically compete with carbon capture and storage. Furthermore, the impact of CO2 separation on the production costs of industrial commodities like cement and steel demonstrates that CO2 removal from the atmosphere is not yet a viable alternative to solving the climate change problem. In the long-term, CO2 separation from ambient air may still play an important role in the sequestration of CO2 from diluted and dispersed sources, as the technology has the potential for significant further development and optimization.

Suggested Citation

  • Krekel, Daniel & Samsun, Remzi Can & Peters, Ralf & Stolten, Detlef, 2018. "The separation of CO2 from ambient air – A techno-economic assessment," Applied Energy, Elsevier, vol. 218(C), pages 361-381.
  • Handle: RePEc:eee:appene:v:218:y:2018:i:c:p:361-381
    DOI: 10.1016/j.apenergy.2018.02.144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918302794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthews, L. & Lipiński, W., 2012. "Thermodynamic analysis of solar thermochemical CO2 capture via carbonation/calcination cycle with heat recovery," Energy, Elsevier, vol. 45(1), pages 900-907.
    2. Nicola Jones, 2009. "Climate crunch: Sucking it up," Nature, Nature, vol. 458(7242), pages 1094-1097, April.
    3. Nikulshina, V. & Hirsch, D. & Mazzotti, M. & Steinfeld, A., 2006. "CO2 capture from air and co-production of H2 via the Ca(OH)2–CaCO3 cycle using concentrated solar power–Thermodynamic analysis," Energy, Elsevier, vol. 31(12), pages 1715-1725.
    4. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    5. Parra, David & Zhang, Xiaojin & Bauer, Christian & Patel, Martin K., 2017. "An integrated techno-economic and life cycle environmental assessment of power-to-gas systems," Applied Energy, Elsevier, vol. 193(C), pages 440-454.
    6. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    7. Hartmann, Niklas & Vöhringer, O. & Kruck, C. & Eltrop, L., 2012. "Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations," Applied Energy, Elsevier, vol. 93(C), pages 541-548.
    8. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaoliu & Yang, Meng & Zhu, Xiaonan & Zhu, Lingjun & Wang, Shurong, 2020. "Experimental study and life cycle assessment of CO2 methanation over biochar supported catalysts," Applied Energy, Elsevier, vol. 280(C).
    2. Sina Hoseinpoori & David Pallarès & Filip Johnsson & Henrik Thunman, 2023. "A comparative exergy-based assessment of direct air capture technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(7), pages 1-20, October.
    3. Lu, Lianmei & Liu, Wu & Wang, Jianxin & Wang, Yudong & Xia, Changrong & Zhou, Xiao-Dong & Chen, Ming & Guan, Wanbing, 2020. "Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes," Applied Energy, Elsevier, vol. 259(C).
    4. Qasem, Naef A.A. & Ben-Mansour, Rached, 2018. "Adsorption breakthrough and cycling stability of carbon dioxide separation from CO2/N2/H2O mixture under ambient conditions using 13X and Mg-MOF-74," Applied Energy, Elsevier, vol. 230(C), pages 1093-1107.
    5. Balint Simon, 2023. "Material flows and embodied energy of direct air capture: A cradle‐to‐gate inventory of selected technologies," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 646-661, June.
    6. Moriarty, Patrick & Honnery, Damon, 2019. "Ecosystem maintenance energy and the need for a green EROI," Energy Policy, Elsevier, vol. 131(C), pages 229-234.
    7. Farzan Kazemifar, 2022. "A review of technologies for carbon capture, sequestration, and utilization: Cost, capacity, and technology readiness," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 200-230, February.
    8. Xu, Haoran & Maroto-Valer, M. Mercedes & Ni, Meng & Cao, Jun & Xuan, Jin, 2019. "Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: A modelling study," Applied Energy, Elsevier, vol. 242(C), pages 911-918.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    2. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    3. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    4. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    5. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    6. Lechón, Yolanda & Lago, Carmen & Herrera, Israel & Gamarra, Ana Rosa & Pérula, Alberto, 2023. "Carbon benefits of different energy storage alternative end uses. Application to the Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Abdon, Andreas & Zhang, Xiaojin & Parra, David & Patel, Martin K. & Bauer, Christian & Worlitschek, Jörg, 2017. "Techno-economic and environmental assessment of stationary electricity storage technologies for different time scales," Energy, Elsevier, vol. 139(C), pages 1173-1187.
    8. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    9. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Zhenya Ji & Zishan Guo & Hao Li & Qi Wang, 2021. "Automated Scheduling Approach under Smart Contract for Remote Wind Farms with Power-to-Gas Systems in Multiple Energy Markets," Energies, MDPI, vol. 14(20), pages 1-17, October.
    11. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    12. McDonagh, Shane & Ahmed, Shorif & Desmond, Cian & Murphy, Jerry D, 2020. "Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment," Applied Energy, Elsevier, vol. 265(C).
    13. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    14. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Larscheid, Patrick & Lück, Lara & Moser, Albert, 2018. "Potential of new business models for grid integrated water electrolysis," Renewable Energy, Elsevier, vol. 125(C), pages 599-608.
    16. Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
    17. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
    18. McDonagh, Shane & Deane, Paul & Rajendran, Karthik & Murphy, Jerry D., 2019. "Are electrofuels a sustainable transport fuel? Analysis of the effect of controls on carbon, curtailment, and cost of hydrogen," Applied Energy, Elsevier, vol. 247(C), pages 716-730.
    19. Tschiggerl, Karin & Sledz, Christian & Topic, Milan, 2018. "Considering environmental impacts of energy storage technologies: A life cycle assessment of power-to-gas business models," Energy, Elsevier, vol. 160(C), pages 1091-1100.
    20. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:218:y:2018:i:c:p:361-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.