IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v139y2016i2d10.1007_s10584-016-1770-6.html
   My bibliography  Save this article

Rapid scale-up of negative emissions technologies: social barriers and social implications

Author

Listed:
  • Holly Jean Buck

    (Cornell University)

Abstract

Negative emissions technologies have garnered increasing attention in the wake of the Paris target to curb global warming to 1.5 °C. However, much of the literature on carbon dioxide removal focuses on technical feasibility, and several significant social barriers to scale-up of these technologies have been glossed over. This paper reviews the existing literature on the social implications of rapidly ramping up carbon dioxide removal. It also explores the applicability of previous empirical social science research on intersecting topics, with examples drawn from research on first- and second-generation biofuels and forest carbon projects. Social science fieldwork and case studies of land use change, agricultural and energy system change, and technology adoption and diffusion can help in both anticipating the social implications of emerging negative emissions technologies and understanding the factors that shape trajectories of technological development. By integrating empirical research on public and producer perceptions, barriers to adoption, conditions driving new technologies, and social impacts, projections about negative emissions technologies can become more realistic and more useful to climate change policymaking.

Suggested Citation

  • Holly Jean Buck, 2016. "Rapid scale-up of negative emissions technologies: social barriers and social implications," Climatic Change, Springer, vol. 139(2), pages 155-167, November.
  • Handle: RePEc:spr:climat:v:139:y:2016:i:2:d:10.1007_s10584-016-1770-6
    DOI: 10.1007/s10584-016-1770-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1770-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1770-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rai, Varun & Victor, David G. & Thurber, Mark C., 2010. "Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies," Energy Policy, Elsevier, vol. 38(8), pages 4089-4098, August.
    2. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    3. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    4. Kuchler, Magdalena, 2014. "Sweet dreams (are made of cellulose): Sociotechnical imaginaries of second-generation bioenergy in the global debate," Ecological Economics, Elsevier, vol. 107(C), pages 431-437.
    5. Nico Bauer, 2015. "Carbon negative at the regional level," Nature Climate Change, Nature, vol. 5(3), pages 196-197, March.
    6. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(3), pages 243-243, December.
    7. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    8. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    9. Simon Shackley & Michael Thompson, 2012. "Lost in the mix: will the technologies of carbon dioxide capture and storage provide us with a breathing space as we strive to make the transition from fossil fuels to renewables?," Climatic Change, Springer, vol. 110(1), pages 101-121, January.
    10. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(2), pages 129-130, November.
    11. Riera, Olivia & Swinnen, Johan, 2016. "Household level spillover effects from biofuels: Evidence from castor in Ethiopia," Food Policy, Elsevier, vol. 59(C), pages 55-65.
    12. Benjamin Neimark & Sango Mahanty & Wolfram Dressler, 2016. "Mapping Value in a ‘Green’ Commodity Frontier: Revisiting Commodity Chain Analysis," Development and Change, International Institute of Social Studies, vol. 47(2), pages 240-265, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pianta, Silvia & Rinscheid, Adrian & Weber, Elke U., 2021. "Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy," Energy Policy, Elsevier, vol. 151(C).
    2. Toby Bolsen & Risa Palm & Russell E. Luke, 2023. "Public response to solar geoengineering: how media frames about stratospheric aerosol injection affect opinions," Climatic Change, Springer, vol. 176(8), pages 1-21, August.
    3. Cotterman, Turner & Small, Mitchell J. & Wilson, Stephen & Abdulla, Ahmed & Wong-Parodi, Gabrielle, 2021. "Applying risk tolerance and socio-technical dynamics for more realistic energy transition pathways," Applied Energy, Elsevier, vol. 291(C).
    4. Wim Carton & Adeniyi Asiyanbi & Silke Beck & Holly J. Buck & Jens F. Lund, 2020. "Negative emissions and the long history of carbon removal," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(6), November.
    5. Laurie Waller & Tim Rayner & Jason Chilvers & Clair Amanda Gough & Irene Lorenzoni & Andrew Jordan & Naomi Vaughan, 2020. "Contested framings of greenhouse gas removal and its feasibility: Social and political dimensions," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
    6. Anders Hansson & Mathias Fridahl & Simon Haikola & Pius Yanda & Noah Pauline & Edmund Mabhuye, 2020. "Preconditions for bioenergy with carbon capture and storage (BECCS) in sub-Saharan Africa: the case of Tanzania," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6851-6875, October.
    7. Cotterman, Turner, 2019. "Why Rapid and Deep Decarbonization isn’t Simple: Linking Bottom-up Socio-technical Decision-making Insights with Top-down Macroeconomic Analyses," Conference papers 333088, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    9. Victoria Wibeck & Anders Hansson & Jonas Anshelm & Shinichiro Asayama & Lisa Dilling & Pamela M. Feetham & Rachel Hauser & Atsushi Ishii & Masahiro Sugiyama, 2017. "Making sense of climate engineering: a focus group study of lay publics in four countries," Climatic Change, Springer, vol. 145(1), pages 1-14, November.
    10. P. A. Turner & K. J. Mach & D. B. Lobell & S. M. Benson & E. Baik & D. L. Sanchez & C. B. Field, 2018. "The global overlap of bioenergy and carbon sequestration potential," Climatic Change, Springer, vol. 148(1), pages 1-10, May.
    11. Terre Satterfield & Sara Nawaz & Guillaume Peterson St-Laurent, 2023. "Exploring public acceptability of direct air carbon capture with storage: climate urgency, moral hazards and perceptions of the ‘whole versus the parts’," Climatic Change, Springer, vol. 176(2), pages 1-21, February.
    12. Anders Hansson & Simon Haikola & Mathias Fridahl & Pius Yanda & Edmund Mabhuye & Noah Pauline, 2021. "Biochar as multi-purpose sustainable technology: experiences from projects in Tanzania," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5182-5214, April.
    13. Kimberly S. Wolske & Kaitlin T. Raimi & Victoria Campbell-Arvai & P. Sol Hart, 2019. "Public support for carbon dioxide removal strategies: the role of tampering with nature perceptions," Climatic Change, Springer, vol. 152(3), pages 345-361, March.
    14. Vassilis Daioglou & Steven K. Rose & Nico Bauer & Alban Kitous & Matteo Muratori & Fuminori Sano & Shinichiro Fujimori & Matthew J. Gidden & Etsushi Kato & Kimon Keramidas & David Klein & Florian Lebl, 2020. "Bioenergy technologies in long-run climate change mitigation: results from the EMF-33 study," Climatic Change, Springer, vol. 163(3), pages 1603-1620, December.
    15. Benjamin K. Sovacool & Chad M. Baum & Sean Low, 2022. "Determining our climate policy future: expert opinions about negative emissions and solar radiation management pathways," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-50, December.
    16. Cohen, Francois & Pfeiffer, Alexander, 2018. "The Impact of Negative Emissions Technologies and Natural Climate Solutions on Power-Sector Asset Stranding," INET Oxford Working Papers 2018-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    17. Wil Burns & Simon Nicholson, 2017. "Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(4), pages 527-534, December.
    18. Nico Bauer & Steven K. Rose & Shinichiro Fujimori & Detlef P. Vuuren & John Weyant & Marshall Wise & Yiyun Cui & Vassilis Daioglou & Matthew J. Gidden & Etsushi Kato & Alban Kitous & Florian Leblanc &, 2020. "Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison," Climatic Change, Springer, vol. 163(3), pages 1553-1568, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Muratori & Nico Bauer & Steven K. Rose & Marshall Wise & Vassilis Daioglou & Yiyun Cui & Etsushi Kato & Matthew Gidden & Jessica Strefler & Shinichiro Fujimori & Ronald D. Sands & Detlef P. Vuu, 2020. "EMF-33 insights on bioenergy with carbon capture and storage (BECCS)," Climatic Change, Springer, vol. 163(3), pages 1621-1637, December.
    2. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    3. Ranjana Raghunathan, 2022. "Everyday Intimacies and Inter-Ethnic Relationships: Tracing Entanglements of Gender and Race in Multicultural Singapore," Sociological Research Online, , vol. 27(1), pages 77-94, March.
    4. Songsore, Emmanuel & Buzzelli, Michael, 2014. "Social responses to wind energy development in Ontario: The influence of health risk perceptions and associated concerns," Energy Policy, Elsevier, vol. 69(C), pages 285-296.
    5. Tapsuwan, Sorada & Polyakov, Maksym & Bark, Rosalind & Nolan, Martin, 2015. "Valuing the Barmah–Millewa Forest and in stream river flows: A spatial heteroskedasticity and autocorrelation consistent (SHAC) approach," Ecological Economics, Elsevier, vol. 110(C), pages 98-105.
    6. Bertschek, Irene & Kesler, Reinhold, 2022. "Let the user speak: Is feedback on Facebook a source of firms’ innovation?," Information Economics and Policy, Elsevier, vol. 60(C).
    7. Gigi Foster, 2020. "The behavioural economics of government responses to COVID-19," Journal of Behavioral Economics for Policy, Society for the Advancement of Behavioral Economics (SABE), vol. 4(S3), pages 11-43, December.
    8. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    9. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    10. Gerards, Ruud & Welters, Ricardo, 2016. "Impact of financial pressure on unemployed job search, job find success and job quality," ROA Research Memorandum 008, Maastricht University, Research Centre for Education and the Labour Market (ROA).
    11. Vasile-Daniel Păvăloaia & Elena-Mădălina Teodor & Doina Fotache & Magdalena Danileţ, 2019. "Opinion Mining on Social Media Data: Sentiment Analysis of User Preferences," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    12. Cailong Xu & Ruidong Li & Wenwen Song & Tingting Wu & Shi Sun & Shuixiu Hu & Tianfu Han & Cunxiang Wu, 2021. "Responses of Branch Number and Yield Component of Soybean Cultivars Tested in Different Planting Densities," Agriculture, MDPI, vol. 11(1), pages 1-12, January.
    13. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    14. Michaela Haase & Emmanuel Raufflet, 2017. "Ideologies in Markets, Organizations, and Business Ethics: Drafting a Map: Introduction to the Special Issue," Journal of Business Ethics, Springer, vol. 142(4), pages 629-639, June.
    15. Rafael Alcadipani & Cíntia Rodrigues Oliveira Medeiros, 2020. "When Corporations Cause Harm: A Critical View of Corporate Social Irresponsibility and Corporate Crimes," Journal of Business Ethics, Springer, vol. 167(2), pages 285-297, November.
    16. Mansoora Ahmed & Sun Zehou & Syed Ali Raza & Muhammad Asif Qureshi & Sara Qamar Yousufi, 2020. "Impact of CSR and environmental triggers on employee green behavior: The mediating effect of employee well‐being," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2225-2239, September.
    17. Licsandru, Tana Cristina & Cui, Charles Chi, 2018. "Subjective social inclusion: A conceptual critique for socially inclusive marketing," Journal of Business Research, Elsevier, vol. 82(C), pages 330-339.
    18. Giger, Markus & Mutea, Emily & Kiteme, Boniface & Eckert, Sandra & Anseeuw, Ward & Zaehringer, Julie G., 2020. "Large agricultural investments in Kenya’s Nanyuki Area: Inventory and analysis of business models," Land Use Policy, Elsevier, vol. 99(C).
    19. Alex Bryson & Christine Erhel & Zinaïda Salibekyan, 2017. "The Effects of Firm Size on Job Quality: A Comparative Study for Britain and France," DoQSS Working Papers 17-08, Quantitative Social Science - UCL Social Research Institute, University College London.
    20. Carnes, Christina Matz & Gilstrap, Frank E. & Hitt, Michael A. & Ireland, R. Duane & Matz, Jack W. & Woodman, Richard W., 2019. "Transforming a traditional research organization through public entrepreneurship," Business Horizons, Elsevier, vol. 62(4), pages 437-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:139:y:2016:i:2:d:10.1007_s10584-016-1770-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.