IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v10y2012i2p231-257.html
   My bibliography  Save this article

Does banner advertising affect browsing for brands? clickstream choice model says yes, for some

Author

Listed:
  • Oliver Rutz

    ()

  • Randolph Bucklin

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Oliver Rutz & Randolph Bucklin, 2012. "Does banner advertising affect browsing for brands? clickstream choice model says yes, for some," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 231-257, June.
  • Handle: RePEc:kap:qmktec:v:10:y:2012:i:2:p:231-257
    DOI: 10.1007/s11129-011-9114-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11129-011-9114-3
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric J. Johnson & Wendy W. Moe & Peter S. Fader & Steven Bellman & Gerald L. Lohse, 2004. "On the Depth and Dynamics of Online Search Behavior," Management Science, INFORMS, vol. 50(3), pages 299-308, March.
    2. Prasad A. Naik & Murali K. Mantrala & Alan G. Sawyer, 1998. "Planning Media Schedules in the Presence of Dynamic Advertising Quality," Marketing Science, INFORMS, pages 214-235.
    3. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    4. Klein, Lisa R., 1998. "Evaluating the Potential of Interactive Media through a New Lens: Search versus Experience Goods," Journal of Business Research, Elsevier, vol. 41(3), pages 195-203, March.
    5. Patrali Chatterjee & Donna L. Hoffman & Thomas P. Novak, 2003. "Modeling the Clickstream: Implications for Web-Based Advertising Efforts," Marketing Science, INFORMS, vol. 22(4), pages 520-541, May.
    6. Nobuhiko Terui & Masataka Ban & Greg M. Allenby, 2011. "The Effect of Media Advertising on Brand Consideration and Choice," Marketing Science, INFORMS, vol. 30(1), pages 74-91, 01-02.
    7. Wendy W. Moe & Peter S. Fader, 2004. "Dynamic Conversion Behavior at E-Commerce Sites," Management Science, INFORMS, vol. 50(3), pages 326-335, March.
    8. Danaher, Peter J. & Mullarkey, Guy W., 2003. "Factors Affecting Online Advertising Recall: A Study of Students," Journal of Advertising Research, Cambridge University Press, vol. 43(03), pages 252-267, September.
    9. Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
    10. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anindya Ghose & Vilma Todri, 2015. "Towards a Digital Attribution Model: Measuring the Impact of Display Advertising on Online Consumer Behavior," Working Papers 15-15, NET Institute.

    More about this item

    Keywords

    Internet; Banner advertising; Clickstream; Logit choice models; Heterogeneity; C01; C11; C33; M31; M37;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • M37 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Advertising

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:10:y:2012:i:2:p:231-257. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.