IDEAS home Printed from https://ideas.repec.org/a/kap/annfin/v15y2019i2d10.1007_s10436-018-0340-5.html
   My bibliography  Save this article

A switching self-exciting jump diffusion process for stock prices

Author

Listed:
  • Donatien Hainaut

    (Université Catholique de Louvain)

  • Franck Moraux

    (Univ. Rennes, CNRS, CREM–UMR6211)

Abstract

This study proposes a new Markov switching process with clustering effects. In this approach, a hidden Markov chain with a finite number of states modulates the parameters of a self-excited jump process combined to a geometric Brownian motion. Each regime corresponds to a particular economic cycle determining the expected return, the diffusion coefficient and the long-run frequency of clustered jumps. We study first the theoretical properties of this process and we propose a sequential Monte-Carlo method to filter the hidden state variables. We next develop a Markov Chain Monte-Carlo procedure to fit the model to the S&P 500. We find that self-exciting jumps occur mainly during economic recession and nearly disappear in periods of economic growth. Finally, we analyse the impact of such a jump clustering on implied volatilities of European options.

Suggested Citation

  • Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
  • Handle: RePEc:kap:annfin:v:15:y:2019:i:2:d:10.1007_s10436-018-0340-5
    DOI: 10.1007/s10436-018-0340-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10436-018-0340-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10436-018-0340-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fulop, Andras & Li, Junye, 2013. "Efficient learning via simulation: A marginalized resample-move approach," Journal of Econometrics, Elsevier, vol. 176(2), pages 146-161.
    2. M. F. M. Osborne, 1959. "Brownian Motion in the Stock Market," Operations Research, INFORMS, vol. 7(2), pages 145-173, April.
    3. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    4. Julien Chevallier & St�phane Goutte, 2015. "Detecting jumps and regime switches in international stock markets returns," Applied Economics Letters, Taylor & Francis Journals, vol. 22(13), pages 1011-1019, September.
    5. Hainaut, D. & Moraux, F., 2017. "Hedging of options in presence of jump clustering," LIDAM Discussion Papers ISBA 2017012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    7. Nakajima Jouchi, 2013. "Stochastic volatility model with regime-switching skewness in heavy-tailed errors for exchange rate returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 499-520, December.
    8. Chan, Wing H & Maheu, John M, 2002. "Conditional Jump Dynamics in Stock Market Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 377-389, July.
    9. Evans, Kevin P., 2011. "Intraday jumps and US macroeconomic news announcements," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2511-2527, October.
    10. Mary Hardy, 2001. "A Regime-Switching Model of Long-Term Stock Returns," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(2), pages 41-53.
    11. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    12. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    13. Donatien Hainaut, 2016. "A model for interest rates with clustering effects," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1203-1218, August.
    14. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    15. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Massimo Guidolin & Allan Timmermann, 2005. "Economic Implications of Bull and Bear Regimes in UK Stock and Bond Returns," Economic Journal, Royal Economic Society, vol. 115(500), pages 111-143, January.
    18. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    19. Laurent E. Calvet, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 49-83.
    20. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 85-118, Suppl. De.
    21. Yang Shen & Kun Fan & Tak Kuen Siu, 2014. "Option Valuation Under a Double Regime‐Switching Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(5), pages 451-478, May.
    22. repec:bla:jfinan:v:59:y:2004:i:2:p:755-793 is not listed on IDEAS
    23. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    24. Ting Wang & Mark Bebbington & David Harte, 2012. "Markov-modulated Hawkes process with stepwise decay," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 521-544, June.
    25. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    26. repec:dau:papers:123456789/7305 is not listed on IDEAS
    27. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    28. Aït-Sahalia, Yacine & Laeven, Roger J.A. & Pelizzon, Loriana, 2014. "Mutual excitation in Eurozone sovereign CDS," Journal of Econometrics, Elsevier, vol. 183(2), pages 151-167.
    29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    30. Robert J. Elliott & Leunglung Chan & Tak Kuen Siu, 2005. "Option pricing and Esscher transform under regime switching," Annals of Finance, Springer, vol. 1(4), pages 423-432, October.
    31. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    32. Donatien Hainaut & Renaud MacGilchrist, 2012. "Strategic asset allocation with switching dependence," Annals of Finance, Springer, vol. 8(1), pages 75-96, February.
    33. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    34. Frank Kelly & Elena Yudovina, 2015. "A Markov model of a limit order book: thresholds, recurrence, and trading strategies," Papers 1504.00579, arXiv.org, revised Mar 2017.
    35. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    36. Jin-Chuan Duan & Andras Fulop, 2015. "Density-Tempered Marginalized Sequential Monte Carlo Samplers," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 192-202, April.
    37. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    38. Mitya Boyarchenko & Svetlana Boyarchenko, 2011. "Double Barrier Options In Regime-Switching Hyper-Exponential Jump-Diffusion Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(07), pages 1005-1043.
    39. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.
    40. Al-Anaswah, Nael & Wilfling, Bernd, 2011. "Identification of speculative bubbles using state-space models with Markov-switching," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1073-1086, May.
    41. Donatien Hainaut, 2016. "A model for interest rates with clustering effects," Post-Print hal-01393994, HAL.
    42. Andras Fulop & Junye Li & Jun Yu, 2015. "Self-Exciting Jumps, Learning, and Asset Pricing Implications," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 876-912.
    43. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    44. Siu, Tak Kuen, 2016. "A self-exciting threshold jump–diffusion model for option valuation," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 168-193.
    45. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    46. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles Guy Njike Leunga & Donatien Hainaut, 2022. "Valuation of Annuity Guarantees Under a Self-Exciting Switching Jump Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 963-990, June.
    2. Donatien Hainaut & Griselda Deelstra, 2019. "A Bivariate Mutually-Excited Switching Jump Diffusion (BMESJD) for Asset Prices," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1337-1375, December.
    3. Ketelbuters, John John & Hainaut, Donatien, 2021. "Time-Consistent Evaluation of Credit Risk with Contagion," LIDAM Discussion Papers ISBA 2021004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Kartikay Gupta & Niladri Chatterjee, 2021. "Stocks Recommendation from Large Datasets Using Important Company and Economic Indicators," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 667-689, December.
    5. Donatien Hainaut, 2020. "An Actuarial Approach for Modeling Pandemic Risk," Risks, MDPI, vol. 9(1), pages 1-28, December.
    6. Giorgia Callegaro & Andrea Mazzoran & Carlo Sgarra, 2019. "A Self-Exciting Modelling Framework for Forward Prices in Power Markets," Papers 1910.13286, arXiv.org.
    7. Luis A. Souto Arias & Pasquale Cirillo & Cornelis W. Oosterlee, 2022. "A new self-exciting jump-diffusion process for option pricing," Papers 2205.13321, arXiv.org, revised Feb 2023.
    8. Njike Leunga, Charles G. & Hainaut, Donatien, 2022. "Long memory self-exciting jump diffusion for asset prices modeling," LIDAM Discussion Papers ISBA 2022003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Riccardo Brignone & Carlo Sgarra, 2020. "Asian options pricing in Hawkes-type jump-diffusion models," Annals of Finance, Springer, vol. 16(1), pages 101-119, March.
    10. Hainaut, Donatien, 2023. "A mutually exciting rough jump diffusion for financial modelling," LIDAM Discussion Papers ISBA 2023011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Hainaut, Donatien, 2020. "Fractional Hawkes processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    12. Hainaut, Donatien & Deelstra, Griselda, 2018. "A Bivariate Mutually-Excited Switching Jump Diffusion (BMESJD) for asset prices," LIDAM Discussion Papers ISBA 2018011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Charles Guy Njike Leunga & Donatien Hainaut, 2024. "Affine Heston model style with self-exciting jumps and long memory," Annals of Finance, Springer, vol. 20(1), pages 1-43, March.
    14. Amit K. Sinha, 2021. "The reliability of geometric Brownian motion forecasts of S&P500 index values," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1444-1462, December.
    15. Hainaut, Donatien, 2019. "Fractional Hawkes processes," LIDAM Discussion Papers ISBA 2019016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hainaut, Donatien, 2014. "Impulse control of pension fund contributions, in a regime switching economy," European Journal of Operational Research, Elsevier, vol. 239(3), pages 810-819.
    2. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Donatien Hainaut & Yang Shen & Yan Zeng, 2018. "How do capital structure and economic regime affect fair prices of bank’s equity and liabilities?," Annals of Operations Research, Springer, vol. 262(2), pages 519-545, March.
    6. Donatien Hainaut & Yan Shen & Yan Zeng, 2016. "How do capital structure and economic regime affect fair prices of bank's equity and liabilities?," Post-Print hal-01394133, HAL.
    7. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    8. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    9. Carverhill, Andrew & Luo, Dan, 2023. "A Bayesian analysis of time-varying jump risk in S&P 500 returns and options," Journal of Financial Markets, Elsevier, vol. 64(C).
    10. Corradi, Valentina & Silvapulle, Mervyn J. & Swanson, Norman R., 2018. "Testing for jumps and jump intensity path dependence," Journal of Econometrics, Elsevier, vol. 204(2), pages 248-267.
    11. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    12. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    13. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    14. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
    15. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
    16. Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.
    17. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    18. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    19. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    20. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.

    More about this item

    Keywords

    Switching regime; Hawkes process; Self-excited jumps; Jump diffusion process;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:15:y:2019:i:2:d:10.1007_s10436-018-0340-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.