Affine Heston model style with self-exciting jumps and long memory
Author
Abstract
Suggested Citation
DOI: 10.1007/s10436-023-00436-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 406-424.
- Donatien Hainaut & Franck Moraux, 2019.
"A switching self-exciting jump diffusion process for stock prices,"
Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
- Hainaut, Donatien & Moraux, Franck, 2018. "A switching self-exciting jump diffusion process for stock prices," LIDAM Discussion Papers ISBA 2018013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hainaut, Donatien & Moraux, Franck, 2019. "A switching self-exciting jump diffusion process for stock prices," LIDAM Reprints ISBA 2019017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Post-Print halshs-01909772, HAL.
- Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
- S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
- Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997.
"Empirical Performance of Alternative Option Pricing Models,"
Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
- Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm54, Yale School of Management.
- Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
- repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
- Merton, Robert C., 1976.
"Option pricing when underlying stock returns are discontinuous,"
Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
- Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
- Thibault Jaisson & Mathieu Rosenbaum, 2013. "Limit theorems for nearly unstable Hawkes processes," Papers 1310.2033, arXiv.org, revised Mar 2015.
- Hainaut, D. & Moraux, F., 2017.
"Hedging of options in presence of jump clustering,"
LIDAM Discussion Papers ISBA
2017012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hainaut, Donatien & Moraux, Franck, 2018. "Hedging of options in presence of jump clustering," LIDAM Reprints ISBA 2018037, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Donatien Hainaut & Franck Moraux, 2018. "Hedging of options in the presence of jump clustering," Post-Print halshs-02024279, HAL.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Darrell Duffie & Jun Pan & Kenneth Singleton, 2000.
"Transform Analysis and Asset Pricing for Affine Jump-Diffusions,"
Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
- Darrell Duffie & Jun Pan & Kenneth Singleton, 1999. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," NBER Working Papers 7105, National Bureau of Economic Research, Inc.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," LIDAM Discussion Papers ISBA 2021028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," LIDAM Reprints ISBA 2021046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Gilles Zumbach & Paul Lynch, 2001. "Heterogeneous volatility cascade in financial markets," Papers cond-mat/0105162, arXiv.org.
- Sana Ben Hamida & Rama Cont, 2005. "Recovering Volatility from Option Prices by Evolutionary Optimization," Post-Print hal-02490586, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Njike Leunga, Charles G. & Hainaut, Donatien, 2022. "Long memory self-exciting jump diffusion for asset prices modeling," LIDAM Discussion Papers ISBA 2022003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
- Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
- Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
- Carr, Peter & Wu, Liuren, 2004.
"Time-changed Levy processes and option pricing,"
Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
- Peter Carr & Liuren Wu, 2002. "Time-Changed Levy Processes and Option Pricing," Finance 0207011, University Library of Munich, Germany.
- Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.
- Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
- Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2023. "Shot-noise cojumps: exact simulation and option pricing," LSE Research Online Documents on Economics 111537, London School of Economics and Political Science, LSE Library.
- Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
- Date, Paresh & Islyaev, Suren, 2015. "A fast calibrating volatility model for option pricing," European Journal of Operational Research, Elsevier, vol. 243(2), pages 599-606.
- Mrázek, Milan & Pospíšil, Jan & Sobotka, Tomáš, 2016. "On calibration of stochastic and fractional stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1036-1046.
- Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
- Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019.
"A general closed form option pricing formula,"
Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
- Ciprian Necula & Gabriel G. Drimus & Walter Farkas, 2015. "A General Closed Form Option Pricing Formula," Swiss Finance Institute Research Paper Series 15-53, Swiss Finance Institute, revised Mar 2016.
- Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
- Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006.
"Pricing and Inference with Mixtures of Conditionally Normal Processes,"
Working Papers
2006-28, Center for Research in Economics and Statistics.
- Bertholon, H. & Monfort, A. & Pegoraro, F., 2007. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working papers 188, Banque de France.
- Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
- Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006.
"Option valuation with conditional skewness,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
- Peter Christoffersen & Steve Heston & Kris Jacobs, 2003. "Option Valuation with Conditional Skewness," CIRANO Working Papers 2003s-50, CIRANO.
- Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.
- Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
More about this item
Keywords
Hawkes process; Memory kernel; Stochastic volatility; Option pricing;All these keywords.
JEL classification:
- C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:20:y:2024:i:1:d:10.1007_s10436-023-00436-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.