IDEAS home Printed from https://ideas.repec.org/b/spr/mathfi/v19y2025i1d10.1007_s11579-024-00379-7.html
   My bibliography  Save this book

A fractional Hawkes process for illiquidity modeling

Author

Listed:
  • Jean-Loup Dupret

    (LIDAM-ISBA, Université Catholique de Louvain)

  • Donatien Hainaut

    (LIDAM-ISBA, Université Catholique de Louvain)

Abstract

The Amihud illiquidity measure has proven to be very popular in the economic and financial literature for measuring the illiquidity process of stocks and indices. None of the existing discrete-time illiquidity models in the literature are however adapted for reproducing peaks of illiquidity with long memory and for the management of the liquidity risk associated with these securities. This paper therefore proposes a new continuous-time paradigm for modeling illiquidity via a novel fractional Hawkes process in which the intensity process is ruled by a modified Mittag-Leffler excitation function. By considering a mean-reverting jump-diffusion model for the (log-)Amihud measure where jumps follow this modified fractional Hawkes process, we then manage to effectively reproduce the observed peaks of illiquidity in financial markets while introducing long-term effects and tractability in the model. We can therefore use this model to directly perform risk management on the Amihud illiquidity measure. This paper hence provides new tools for a better management of the illiquidity risk in financial markets.

Suggested Citation

  • Jean-Loup Dupret & Donatien Hainaut, 2025. "A fractional Hawkes process for illiquidity modeling," Mathematics and Financial Economics, Springer, volume 19, number 6, September.
  • Handle: RePEc:spr:mathfi:v:19:y:2025:i:1:d:10.1007_s11579-024-00379-7
    DOI: 10.1007/s11579-024-00379-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11579-024-00379-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11579-024-00379-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dupret, Jean-Loup & Hainaut, Donatien, 2021. "Portfolio insurance under rough volatility and Volterra processes," LIDAM Discussion Papers ISBA 2021026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. repec:hal:wpaper:hal-03827332 is not listed on IDEAS
    3. Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Thibault Jaisson, 2015. "Market impact as anticipation of the order flow imbalance," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1123-1135, July.
    5. Hainaut, Donatien, 2020. "Fractional Hawkes processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    6. Hainaut, D. & Moraux, F., 2017. "Hedging of options in presence of jump clustering," LIDAM Discussion Papers ISBA 2017012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Donatien Hainaut, 2016. "A model for interest rates with clustering effects," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1203-1218, August.
    8. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    9. Jean-Loup Dupret & Donatien Hainaut, 2021. "Portfolio Insurance Under Rough Volatility And Volterra Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(06n07), pages 1-35, September.
    10. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    11. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    12. José Da Fonseca & Riadh Zaatour, 2014. "Hawkes Process: Fast Calibration, Application to Trade Clustering, and Diffusive Limit," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(6), pages 548-579, June.
    13. Christian M. Hafner & Oliver B. Linton & Linqi Wang, 2024. "Dynamic Autoregressive Liquidity (DArLiQ)," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 774-785, April.
    14. Dupret, Jean-Loup & Hainaut, Donatien, 2021. "Portfolio insurance under rough volatility and Volterra processes," LIDAM Reprints ISBA 2021051, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    16. Claudio Albanese & Ken Jackson & Petter Wiberg, 2004. "A new Fourier transform algorithm for value-at-risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 328-338.
    17. Ulrich Horst & Wei Xu, 2024. "Functional Limit Theorems for Hawkes Processes," Papers 2401.11495, arXiv.org, revised Dec 2024.
    18. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
    19. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    20. Hainaut, Donatien, 2020. "Fractional Hawkes processes," LIDAM Reprints ISBA 2020009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Eduardo Abi Jaber, 2021. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Post-Print hal-02412741, HAL.
    22. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    23. Alan G. Hawkes, 2022. "Hawkes jump-diffusions and finance: a brief history and review," The European Journal of Finance, Taylor & Francis Journals, vol. 28(7), pages 627-641, May.
    24. Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Reprints ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    25. Donatien Hainaut, 2016. "A model for interest rates with clustering effects," Post-Print hal-01393994, HAL.
    26. Pipiras,Vladas & Taqqu,Murad S., 2017. "Long-Range Dependence and Self-Similarity," Cambridge Books, Cambridge University Press, number 9781107039469, Enero.
    27. Eduardo Abi Jaber, 2021. "Weak existence and uniqueness for affine stochastic Volterra equations with L1-kernels," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02412741, HAL.
    28. Yakov Amihud & Haim Mendelson, 2015. "The Pricing of Illiquidity as a Characteristic and as Risk," Multinational Finance Journal, Multinational Finance Journal, vol. 19(3), pages 149-168, September.
    29. Charles Guy Njike Leunga & Donatien Hainaut, 2024. "Affine Heston model style with self-exciting jumps and long memory," Annals of Finance, Springer, vol. 20(1), pages 1-43, March.
    30. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    31. Bondi, Alessandro & Livieri, Giulia & Pulido, Sergio, 2024. "Affine Volterra processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dupret, Jean-Loup & Hainaut, Donatien, 2023. "A fractional Hawkes process for illiquidity modeling," LIDAM Discussion Papers ISBA 2023001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Dupret, Jean-Loup & Hainaut, Donatien, 2022. "A subdiffusive stochastic volatility jump model," LIDAM Discussion Papers ISBA 2022001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Zeitsch, Peter J., 2019. "A jump model for credit default swaps with hierarchical clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 737-775.
    5. Ketelbuters, John-John & Hainaut, Donatien, 2022. "CDS pricing with fractional Hawkes processes," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1139-1150.
    6. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    7. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    8. Hainaut, Donatien, 2016. "A bivariate Hawkes process for interest rate modeling," Economic Modelling, Elsevier, vol. 57(C), pages 180-196.
    9. Olivier Le Courtois & François Quittard-Pinon & Xiaoshan Su, 2020. "Pricing and hedging defaultable participating contracts with regime switching and jump risk," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 303-339, June.
    10. Alessandra Cretarola & Gianna Figà-Talamanca & Marco Patacca, 2025. "Option pricing in a sentiment-biased stochastic volatility model," Annals of Finance, Springer, vol. 21(1), pages 69-95, March.
    11. Hainaut, Donatien, 2019. "Credit risk modelling with fractional self-excited processes," LIDAM Discussion Papers ISBA 2019027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Habyarimana, Cassien & Aduda, Jane A. & Scalas, Enrico & Chen, Jing & Hawkes, Alan G. & Polito, Federico, 2023. "A fractional Hawkes process II: Further characterization of the process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    13. Chen, Li & Ma, Yong & Xiao, Weilin, 2022. "Pricing defaultable bonds under Hawkes jump-diffusion processes," Finance Research Letters, Elsevier, vol. 47(PB).
    14. Aur'elien Alfonsi & Guillaume Szulda, 2024. "On non-negative solutions of stochastic Volterra equations with jumps and non-Lipschitz coefficients," Papers 2402.19203, arXiv.org, revised Jul 2024.
    15. Hainaut, Donatien, 2023. "A mutually exciting rough jump diffusion for financial modelling," LIDAM Discussion Papers ISBA 2023011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Hainaut, Donatien, 2017. "Contagion modeling between the financial and insurance markets with time changed processes," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 63-77.
    17. Zhang, Zhehao & Xing, Ruina, 2025. "Multivariate Hawkes process allowing for common shocks," Statistics & Probability Letters, Elsevier, vol. 216(C).
    18. Xinglin Yang & Ji Chen, 2021. "VIX term structure: The role of jump propagation risks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 785-810, June.
    19. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    20. Lee Kyungsub, 2024. "Multi-kernel property in high-frequency price dynamics under Hawkes model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(4), pages 605-624.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathfi:v:19:y:2025:i:1:d:10.1007_s11579-024-00379-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.