IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i1p152-d88348.html
   My bibliography  Save this article

Siting of Carsharing Stations Based on Spatial Multi-Criteria Evaluation: A Case Study of Shanghai EVCARD

Author

Listed:
  • Wenxiang Li

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai 201804, China
    College of Transportation Engineering, Tongji University, Shanghai 201804, China)

  • Ye Li

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai 201804, China
    College of Transportation Engineering, Tongji University, Shanghai 201804, China)

  • Jing Fan

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai 201804, China
    College of Transportation Engineering, Tongji University, Shanghai 201804, China)

  • Haopeng Deng

    (The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Shanghai 201804, China
    College of Transportation Engineering, Tongji University, Shanghai 201804, China)

Abstract

Carsharing is one of the effective ways to relieve the problems of traffic jams, parking difficulties, and air pollution. In recent years, the numbers of carsharing services and their members have remarkably increased around the world. The project of electric carsharing in Shanghai, called EVCARD, has also developed rapidly with very large demand and supply. Aiming to determine the optimal locations of future stations of the EVCARD, this research employs a novel method combining the analytic hierarchy process (AHP) and geographical information system (GIS) with big data. Potential users, potential travel demand, potential travel purposes, and distance from existing stations are selected as the decision criteria. A siting decision system is established, consisting of 15 evaluation indicators which are calculated from multi-source data on mobile phones, taxi trajectory, point of interests (POI), and the EVCARD operation. The method of the AHP is used to determine the indicator weights, and the “Spatial Analyst” tool of ArcGIS is adopted to generate the indicator values for every 1 km × 1 km decision unit. Finally, synthetic scores are calculated to evaluate the candidate sites of EVCARD stations. The results of the case study verify the effectiveness of the proposed method, which can provide a more scientific and feasible method for carsharing operators to site stations, avoiding aimless and random decisions.

Suggested Citation

  • Wenxiang Li & Ye Li & Jing Fan & Haopeng Deng, 2017. "Siting of Carsharing Stations Based on Spatial Multi-Criteria Evaluation: A Case Study of Shanghai EVCARD," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:152-:d:88348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin, Elliot & Shaheen, Susan Alison & Lidicker, Jeffrey, 2010. "Carsharing’S Impact On Household Vehicle Holdings: Results From A North American Shared-Use Vehicle Survey," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0850h6r5, Institute of Transportation Studies, UC Berkeley.
    2. Martin, Elliot & Shaheen, Susan Alison & Lidicker, Jeffrey, 2010. "Carsharing’S Impact On Household Vehicle Holdings: Results From A North American Shared-Use Vehicle Survey," Institute of Transportation Studies, Working Paper Series qt0850h6r5, Institute of Transportation Studies, UC Davis.
    3. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    4. Anjali Awasthi & Satyaveer S. Chauhan & Xavier Hurteau & Dominique Breuil, 2008. "An Analytical Hierarchical Process-based decision-making approach for selecting car-sharing stations in medium size agglomerations," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 1(1), pages 66-97.
    5. Mohd Safian, Edie Ezwan & Nawawi, Abdul Hadi, 2012. "Combining AHP with GIS in the evaluation of locational characteristics quality for purpose-built offices in Malaysia," MPRA Paper 39546, University Library of Munich, Germany.
    6. Ganjar Alfian & Jongtae Rhee & Yong-Shin Kang & Byungun Yoon, 2015. "Performance Comparison of Reservation Based and Instant Access One-Way Car Sharing Service through Discrete Event Simulation," Sustainability, MDPI, vol. 7(9), pages 1-25, September.
    7. Francesco Ciari & Claude Weis & Milos Balac, 2016. "Evaluating the influence of carsharing stations’ location on potential membership: a Swiss case study," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 345-369, August.
    8. Martin, Elliot & Shaheen, Susan A & Lidicker, Jeffrey, 2010. "Impact of Carsharing on Household Vehicle Holdings: Resultsvfrom a North American Shared-Use Vehicle Survey," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3bn9n6pq, Institute of Transportation Studies, UC Berkeley.
    9. Correia, Gonçalo Homem de Almeida & Antunes, António Pais, 2012. "Optimization approach to depot location and trip selection in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 233-247.
    10. J. Javid, Roxana & Nejat, Ali & Hayhoe, Katharine, 2014. "Selection of CO2 mitigation strategies for road transportation in the United States using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 960-972.
    11. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2015. "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, Elsevier, vol. 240(3), pages 718-733.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Turoń, 2022. "Multi-Criteria Decision Analysis during Selection of Vehicles for Car-Sharing Services—Regular Users’ Expectations," Energies, MDPI, vol. 15(19), pages 1-15, October.
    2. Li, Wenxiang & Chen, Shawen & Dong, Jieshuang & Wu, Jingxian, 2021. "Exploring the spatial variations of transfer distances between dockless bike-sharing systems and metros," Journal of Transport Geography, Elsevier, vol. 92(C).
    3. Jarosław Wątróbski & Krzysztof Małecki & Kinga Kijewska & Stanisław Iwan & Artur Karczmarczyk & Russell G. Thompson, 2017. "Multi-Criteria Analysis of Electric Vans for City Logistics," Sustainability, MDPI, vol. 9(8), pages 1-34, August.
    4. Szabolcs Duleba & Sarbast Moslem, 2018. "Sustainable Urban Transport Development with Stakeholder Participation, an AHP-Kendall Model: A Case Study for Mersin," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    5. Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2022. "What Car for Car-Sharing? Conventional, Electric, Hybrid or Hydrogen Fleet? Analysis of the Vehicle Selection Criteria for Car-Sharing Systems," Energies, MDPI, vol. 15(12), pages 1-14, June.
    6. Feng, Xiaoyan & Sun, Huijun & Wu, Jianjun & Liu, Zhiyuan & Lv, Ying, 2020. "Trip chain based usage patterns analysis of the round-trip carsharing system: A case study in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 190-203.
    7. Carrese, Stefano & D'Andreagiovanni, Fabio & Giacchetti, Tommaso & Nardin, Antonella & Zamberlan, Leonardo, 2021. "An optimization model and genetic-based matheuristic for parking slot rent optimization to carsharing," Research in Transportation Economics, Elsevier, vol. 85(C).
    8. Yalcin, Ahmet Selcuk & Kilic, Huseyin Selcuk & Delen, Dursun, 2022. "The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    9. Zou, Guojian & Lai, Ziliang & Li, Ye & Liu, Xinghua & Li, Wenxiang, 2022. "Exploring the nonlinear impact of air pollution on housing prices: A machine learning approach," Economics of Transportation, Elsevier, vol. 31(C).
    10. Vanduy Tran & Shengchuan Zhao & El Bachir Diop & Weiya Song, 2019. "Travelers’ Acceptance of Electric Carsharing Systems in Developing Countries: The Case of China," Sustainability, MDPI, vol. 11(19), pages 1-22, September.
    11. Wenxiang Li & Ye Li & Haopeng Deng & Lei Bao, 2018. "Planning of Electric Public Transport System under Battery Swap Mode," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    12. Antonella Petrillo & Pasquale Carotenuto & Ilaria Baffo & Fabio De Felice, 2018. "A web-based multiple criteria decision support system for evaluation analysis of carpooling," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2321-2341, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    2. Junhee Kang & Keeyeon Hwang & Sungjin Park, 2016. "Finding Factors that Influence Carsharing Usage: Case Study in Seoul," Sustainability, MDPI, vol. 8(8), pages 1-12, July.
    3. Long He & Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2017. "Service Region Design for Urban Electric Vehicle Sharing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 309-327, May.
    4. Frank, Laura & Dirks, Nicolas & Walther, Grit, 2021. "Improving rural accessibility by locating multimodal mobility hubs," Journal of Transport Geography, Elsevier, vol. 94(C).
    5. Boyacı, Burak & Zografos, Konstantinos G., 2019. "Investigating the effect of temporal and spatial flexibility on the performance of one-way electric carsharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 244-272.
    6. Susan Shaheen & Nelson Chan & Helen Micheaux, 2015. "One-way carsharing’s evolution and operator perspectives from the Americas," Transportation, Springer, vol. 42(3), pages 519-536, May.
    7. Irfan Ullah & Kai Liu & Tran Vanduy, 2019. "Examining Travelers’ Acceptance towards Car Sharing Systems—Peshawar City, Pakistan," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    8. Yoon-Young Chun & Mitsutaka Matsumoto & Kiyotaka Tahara & Kenichiro Chinen & Hideki Endo, 2019. "Exploring Factors Affecting Car Sharing Use Intention in the Southeast-Asia Region: A Case Study in Java, Indonesia," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    9. Maria Juschten & Timo Ohnmacht & Vu Thi Thao & Regine Gerike & Reinhard Hössinger, 2019. "Carsharing in Switzerland: identifying new markets by predicting membership based on data on supply and demand," Transportation, Springer, vol. 46(4), pages 1171-1194, August.
    10. Hadi Charkhgard & Mahdi Takalloo & Zulqarnain Haider, 2020. "Bi-objective autonomous vehicle repositioning problem with travel time uncertainty," 4OR, Springer, vol. 18(4), pages 477-505, December.
    11. Mehdi Nourinejad & Matthew Roorda, 2015. "Carsharing operations policies: a comparison between one-way and two-way systems," Transportation, Springer, vol. 42(3), pages 497-518, May.
    12. Lovejoy, Kristin, 2012. "Mobility Fulfillment Among Low-car Households: Implications for Reducing Auto Dependence in the United States," Institute of Transportation Studies, Working Paper Series qt4v44b5qn, Institute of Transportation Studies, UC Davis.
    13. Yue Guo & Fu Xin & Xiaotong Li, 2020. "The market impacts of sharing economy entrants: evidence from USA and China," Electronic Commerce Research, Springer, vol. 20(3), pages 629-649, September.
    14. Xin-Wei Li & Hong-Zhi Miao, 2023. "How to Incorporate Autonomous Vehicles into the Carbon Neutrality Framework of China: Legal and Policy Perspectives," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    15. Matthew Clark & Kate Gifford & Jillian Anable & Scott Le Vine, 2015. "Business-to-business carsharing: evidence from Britain of factors associated with employer-based carsharing membership and its impacts," Transportation, Springer, vol. 42(3), pages 471-495, May.
    16. Diana, Marco & Chicco, Andrea, 2022. "The spatial reconfiguration of parking demand due to car sharing diffusion: a simulated scenario for the cities of Milan and Turin (Italy)," Journal of Transport Geography, Elsevier, vol. 98(C).
    17. Wu, Guoqiang & Hong, Jinhyun & Thakuriah, Piyushimita, 2019. "Assessing the relationships between young adults’ travel and use of the internet over time," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 8-19.
    18. Yuan, Ruizhi & Luo, Jun & Liu, Martin J. & Yu, Jiang, 2022. "Understanding organizational resilience in a platform-based sharing business: The role of absorptive capacity," Journal of Business Research, Elsevier, vol. 141(C), pages 85-99.
    19. Susanna Ulinski, 2015. "Corporate Social Innovation as a Driver of Performance and Welfare. WWWforEurope Policy Paper No. 25," WIFO Studies, WIFO, number 58500, April.
    20. Kent, Jennifer & Dowling, Robyn & Maalsen, Sophia, 2017. "Catalysts for transport transitions: Bridging the gap between disruptions and change," Journal of Transport Geography, Elsevier, vol. 60(C), pages 200-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:152-:d:88348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.