IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i8p709-d74691.html
   My bibliography  Save this article

Finding Factors that Influence Carsharing Usage: Case Study in Seoul

Author

Listed:
  • Junhee Kang

    (Department of Urban Design and Planning, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 121–791, Korea)

  • Keeyeon Hwang

    (Department of Urban Design and Planning, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 121–791, Korea)

  • Sungjin Park

    (Department of Urban Design and Planning, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 121–791, Korea)

Abstract

The goal of this research is to investigate the factors that affect carsharing demand. As a proxy for carsharing demand, the number of (booking) transactions made by carsharing users is counted based on the data from one of the two major carsharing operators in Seoul, Korea. In order to identify the factors influencing station-based carsharing usage, multiple linear regression modeling was performed with the number of carsharing transactions as a dependent variable and with the three groups of independent variables: Built environment, demographic, and transportation variables. Instead of using the locations of the pods, this study uses the residential locations of carsharing users who made transactions, and the final result analyzing 420 districts shows that six variables significantly influence carsharing usage. Carsharing demand is high in an area where a higher proportion of building floor area is used for business, and which has a higher proportion of young residents in their 20s and 30s. It can also be predicted that the area with more registered cars and less subway entrances will show higher carsharing demand. The analysis result also suggests that providing additional carsharing pods, especially pods that utilize city owned public parking facilities, will help promote carsharing usage. This research establishes a basis for future research efforts to forecast carsharing demand and to identify areas with high potential, especially in major Asian cities.

Suggested Citation

  • Junhee Kang & Keeyeon Hwang & Sungjin Park, 2016. "Finding Factors that Influence Carsharing Usage: Case Study in Seoul," Sustainability, MDPI, vol. 8(8), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:709-:d:74691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/8/709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/8/709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Habib, Khandker M. Nurul & Morency, Catherine & Islam, Mohammed Tazul & Grasset, Vincent, 2012. "Modelling users’ behaviour of a carsharing program: Application of a joint hazard and zero inflated dynamic ordered probability model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 241-254.
    2. repec:cdl:itsrrp:qt0850h6r5 is not listed on IDEAS
    3. repec:cdl:itsdav:qt0850h6r5 is not listed on IDEAS
    4. So-Hyun Park & Jun-Hyung Kim & Yee-Myung Choi & Han-Lim Seo, 2013. "Design elements to improve pleasantness, vitality, safety, and complexity of the pedestrian environment: evidence from a Korean neighbourhood walkability case study," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(1), pages 142-160, March.
    5. Kim, Kyeongsu, 2015. "Can carsharing meet the mobility needs for the low-income neighborhoods? Lessons from carsharing usage patterns in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 249-260.
    6. repec:cdl:itsrrp:qt6wr90040 is not listed on IDEAS
    7. Ganjar Alfian & Jongtae Rhee & Yong-Shin Kang & Byungun Yoon, 2015. "Performance Comparison of Reservation Based and Instant Access One-Way Car Sharing Service through Discrete Event Simulation," Sustainability, MDPI, vol. 7(9), pages 1-25, September.
    8. repec:cdl:itsrrp:qt3bn9n6pq is not listed on IDEAS
    9. Heungsoon Kim & Jaehyeong Nam, 2013. "The size of the station influence area in Seoul, Korea: based on the survey of users of seven stations," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 17(3), pages 331-349, November.
    10. Correia, Gonçalo Homem de Almeida & Antunes, António Pais, 2012. "Optimization approach to depot location and trip selection in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 233-247.
    11. repec:cdl:itsrrp:qt6dw9d79z is not listed on IDEAS
    12. repec:cdl:uctcwp:qt14d994bn is not listed on IDEAS
    13. Dowling, Robyn & Kent, Jennifer, 2015. "Practice and public–private partnerships in sustainable transport governance: The case of car sharing in Sydney, Australia," Transport Policy, Elsevier, vol. 40(C), pages 58-64.
    14. repec:cdl:itsrrp:qt14d994bn is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    2. Jingjing Jia & Shujie Ma & Yixi Xue & Deyang Kong, 2020. "Life-Cycle Break-Even Analysis of Electric Carsharing: A Comparative Study in China," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    3. Feng, Xiaoyan & Sun, Huijun & Wu, Jianjun & Liu, Zhiyuan & Lv, Ying, 2020. "Trip chain based usage patterns analysis of the round-trip carsharing system: A case study in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 190-203.
    4. Haitao Yu & Zhong-Ren Peng, 2020. "The impacts of built environment on ridesourcing demand: A neighbourhood level analysis in Austin, Texas," Urban Studies, Urban Studies Journal Limited, vol. 57(1), pages 152-175, January.
    5. Johannes Müller & Gonçalo Homem de Almeida Correia & Klaus Bogenberger, 2017. "An Explanatory Model Approach for the Spatial Distribution of Free-Floating Carsharing Bookings: A Case-Study of German Cities," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    6. Guowei Zhu & Hongshan Li & Li Zhou, 2018. "Enhancing the development of sharing economy to mitigate the carbon emission: a case study of online ride-hailing development in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 611-633, March.
    7. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.
    8. Carrone, Andrea Papu & Rich, Jeppe & Watling, David, 2024. "Analysis of car sharing operation area performance: An idle time prediction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    9. Helena Dall Pizzol & Stefânia Ordovás de Almeida & Mauren Do Couto Soares, 2017. "Collaborative Consumption: A Proposed Scale for Measuring the Construct Applied to a Carsharing Setting," Sustainability, MDPI, vol. 9(5), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoon-Young Chun & Mitsutaka Matsumoto & Kiyotaka Tahara & Kenichiro Chinen & Hideki Endo, 2019. "Exploring Factors Affecting Car Sharing Use Intention in the Southeast-Asia Region: A Case Study in Java, Indonesia," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    2. Ganjar Alfian & Jongtae Rhee & Yong-Shin Kang & Byungun Yoon, 2015. "Performance Comparison of Reservation Based and Instant Access One-Way Car Sharing Service through Discrete Event Simulation," Sustainability, MDPI, vol. 7(9), pages 1-25, September.
    3. Nourinejad, Mehdi & Roorda, Matthew J., 2014. "A dynamic carsharing decision support system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 36-50.
    4. Rotaris, Lucia, 2022. "Peer-to-peer carsharing in less-densely populated areas: An empirical analysis in Friuli-Venezia Giulia (Italy)," Research in Transportation Economics, Elsevier, vol. 91(C).
    5. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    6. repec:cdl:itsrrp:qt53z3h2gt is not listed on IDEAS
    7. Ying Hui & Mengtao Ding & Kun Zheng & Dong Lou, 2017. "Observing Trip Chain Characteristics of Round-Trip Carsharing Users in China: A Case Study Based on GPS Data in Hangzhou City," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    8. Feng, Xiaoyan & Sun, Huijun & Wu, Jianjun & Liu, Zhiyuan & Lv, Ying, 2020. "Trip chain based usage patterns analysis of the round-trip carsharing system: A case study in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 190-203.
    9. Schaefers, Tobias, 2013. "Exploring carsharing usage motives: A hierarchical means-end chain analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 69-77.
    10. Maria Juschten & Timo Ohnmacht & Vu Thi Thao & Regine Gerike & Reinhard Hössinger, 2019. "Carsharing in Switzerland: identifying new markets by predicting membership based on data on supply and demand," Transportation, Springer, vol. 46(4), pages 1171-1194, August.
    11. Wenxiang Li & Ye Li & Jing Fan & Haopeng Deng, 2017. "Siting of Carsharing Stations Based on Spatial Multi-Criteria Evaluation: A Case Study of Shanghai EVCARD," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    12. Jian, Sisi & Liu, Wei & Wang, Xiaolei & Yang, Hai & Waller, S. Travis, 2020. "On integrating carsharing and parking sharing services," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 19-44.
    13. Jin, Fanglei & Yao, Enjian & An, Kun, 2020. "Analysis of the potential demand for battery electric vehicle sharing: Mode share and spatiotemporal distribution," Journal of Transport Geography, Elsevier, vol. 82(C).
    14. Wagner, Sebastian & Brandt, Tobias & Neumann, Dirk, 2016. "In free float: Developing Business Analytics support for carsharing providers," Omega, Elsevier, vol. 59(PA), pages 4-14.
    15. Mengwei Chen & Yilin Sun & E Owen D Waygood & Jincheng Yu & Kai Zhu, 2022. "User characteristics and service satisfaction of car sharing systems: Evidence from Hangzhou, China," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-16, February.
    16. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    17. João Monteiro & Ana Clara Carrilho & Nuno Sousa & Leise Kelli de Oliveira & Eduardo Natividade-Jesus & João Coutinho-Rodrigues, 2023. "Do We Live Where It Is Pleasant? Correlates of Perceived Pleasantness with Socioeconomic Variables," Land, MDPI, vol. 12(4), pages 1-20, April.
    18. Wu, Peng, 2019. "Which battery-charging technology and insurance contract is preferred in the electric vehicle sharing business?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 537-548.
    19. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    20. Stefan Illgen & Michael Höck, 2020. "Establishing car sharing services in rural areas: a simulation-based fleet operations analysis," Transportation, Springer, vol. 47(2), pages 811-826, April.
    21. Katarzyna Turoń, 2022. "Multi-Criteria Decision Analysis during Selection of Vehicles for Car-Sharing Services—Regular Users’ Expectations," Energies, MDPI, vol. 15(19), pages 1-15, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:709-:d:74691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.