IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8870-d1764858.html
   My bibliography  Save this article

The Impact of Drought Risk on Maize Crop in Romania

Author

Listed:
  • Flavia Mirela Barna

    (Faculty of Economics and Business Administration, West University of Timisoara, 300223 Timișoara, Timiș County, Romania)

  • Alina Claudia Manescu

    (Doctoral School of Economics and Business Administration, West University of Timisoara, 300223 Timișoara, Timiș County, Romania)

Abstract

This study examines the effects of climate change on maize production in Romania between 2003 and 2024, focusing on yield dynamics, regional disparities, and economic losses. Maize, a key crop in Romanian agriculture, has become increasingly vulnerable to extreme weather events, particularly droughts, which remain the most frequent risk. The analysis highlights a marked decline in maize yields and cultivated area in recent years, strongly correlated with severe droughts in 2020, 2022, and 2024. The results show that western and northern counties display greater resilience, while southeastern regions face significant yield losses. The economic impact is substantial, with losses exceeding EUR 1 billion. These findings underscore the systemic nature of climate-related risks and call for region-specific adaptation strategies, expanded irrigation infrastructure, and index-based insurance schemes to strengthen resilience and ensure sustainable maize production under changing climatic conditions.

Suggested Citation

  • Flavia Mirela Barna & Alina Claudia Manescu, 2025. "The Impact of Drought Risk on Maize Crop in Romania," Sustainability, MDPI, vol. 17(19), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8870-:d:1764858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Odening & Oliver Musshoff & Wei Xu, 2007. "Analysis of rainfall derivatives using daily precipitation models: opportunities and pitfalls," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 67(1), pages 135-156, May.
    2. Richard E. Just & Quinn Weninger, 1999. "Are Crop Yields Normally Distributed?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(2), pages 287-304.
    3. repec:cdl:agrebk:qt8q8309qn is not listed on IDEAS
    4. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    5. Wolfram Schlenker & Michael J. Roberts, 2006. "Nonlinear Effects of Weather on Corn Yields ," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(3), pages 391-398.
    6. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    7. M. Ionita & P. Scholz & S. Chelcea, 2016. "Assessment of droughts in Romania using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1483-1498, April.
    8. Martin Odening & Oliver Musshoff & Wei Xu, 2007. "Analysis of rainfall derivatives using daily precipitation models: opportunities and pitfalls," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 67(1), pages 135-156, May.
    9. Murat Isik & Stephen Devadoss, 2006. "An analysis of the impact of climate change on crop yields and yield variability," Applied Economics, Taylor & Francis Journals, vol. 38(7), pages 835-844.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    2. Jose A. Perez‐Mendez & David Roibas & Alan Wall, 2019. "The influence of weather conditions on dairy production," Agricultural Economics, International Association of Agricultural Economists, vol. 50(2), pages 165-175, March.
    3. Kenta Tanaka & Shunsuke Managi & Katsunobu Kondo & Kiyotaka Masuda & Yasutaka Yamamoto, 2011. "Potential Climate Effect On Japanese Rice Productivity," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 237-255.
    4. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
    5. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    6. repec:isu:genstf:201701010800006585 is not listed on IDEAS
    7. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    8. Patrick S. Ward & Raymond J. G. M. Florax & Alfonso Flores-Lagunes, 2014. "Climate change and agricultural productivity in Sub-Saharan Africa: a spatial sample selection model," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(2), pages 199-226.
    9. Zhou, Li & Turvey, Calum G., 2014. "Climate change, adaptation and China's grain production," China Economic Review, Elsevier, vol. 28(C), pages 72-89.
    10. Siameh, Celestine & Tack, Jesse & Barnett, Barry J. & Harri, Ardian, 2016. "Cotton Premium Rate Heterogeneities and Implications under Climate Change," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230089, Southern Agricultural Economics Association.
    11. Colelli, Francesco Pietro & Wing, Ian Sue & De Cian, Enrica, 2023. "Intensive and extensive margins of the peak load: Measuring adaptation with mixed frequency panel data," Energy Economics, Elsevier, vol. 126(C).
    12. Mérel, Pierre & Paroissien, Emmanuel & Gammans, Matthew, 2024. "Sufficient statistics for climate change counterfactuals," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    13. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    14. Sedova, Barbora & Kalkuhl, Matthias, 2020. "Who are the climate migrants and where do they go? Evidence from rural India," World Development, Elsevier, vol. 129(C).
    15. Joshi, Niraj Prakash & Maharjan, Keshav Lall & Piya, Luni, 2011. "Effect of climate variables on yield of major food-crops in Nepal -A time-series analysis-," MPRA Paper 35379, University Library of Munich, Germany.
    16. Balistreri, Edward J. & Tarr, David G., 2011. "Services Liberalization in Preferential Trade Arrangements: The Case of Kenya," Conference papers 332152, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    18. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    19. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    20. Zhiwei Shen & Martin Odening & Ostap Okhrin, 2016. "Can expert knowledge compensate for data scarcity in crop insurance pricing?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(2), pages 237-269.
    21. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8870-:d:1764858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.