IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p766-d1021834.html
   My bibliography  Save this article

The Significance of Governance Indicators to Achieve Carbon Neutrality: A New Insight of Life Expectancy

Author

Listed:
  • Ghazala Aziz

    (Department of Business Administration, College of Administrative and Financial Sciences, Saudi Electronic University, Jeddah 93499, Saudi Arabia)

  • Rida Waheed

    (Department of Finance and Economics, College of Business, University of Jeddah, Jeddah 23218, Saudi Arabia)

  • Suleman Sarwar

    (Department of Finance and Economics, College of Business, University of Jeddah, Jeddah 23218, Saudi Arabia)

  • Mohd Saeed Khan

    (Department of Finance and Economics, College of Business, University of Jeddah, Jeddah 23218, Saudi Arabia)

Abstract

This paper investigates the impact of life expectancy on carbon emission, in Saudi Arabia. Additionally, we examined the role of governance to achieve carbon neutrality status. We used the novel dynamic ARDL technique for estimations. This is one of the pioneer studies that analyze the role of life expectancy to control carbon emissions. The coefficients of life expectancy, education, and political stability are significantly negative. On contrary, governance effectiveness is an obstacle to achieving carbon neutrality. Empirical findings of life expectancy and governance effectiveness are quite surprising. In terms of Vision 2030 estimations, the coefficient of corruption control is significant and negative, indicating that the Saudi government has prioritized corruption control. While governance effectiveness remains positive, the Saudi government still requires governance reforms in order to achieve carbon neutrality goals.

Suggested Citation

  • Ghazala Aziz & Rida Waheed & Suleman Sarwar & Mohd Saeed Khan, 2022. "The Significance of Governance Indicators to Achieve Carbon Neutrality: A New Insight of Life Expectancy," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:766-:d:1021834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abid, Mehdi, 2016. "Impact of economic, financial, and institutional factors on CO2 emissions: Evidence from Sub-Saharan Africa economies," Utilities Policy, Elsevier, vol. 41(C), pages 85-94.
    2. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    3. Ren, Yi-Shuai & Ma, Chao-Qun & Apergis, Nicholas & Sharp, Basil, 2021. "Responses of carbon emissions to corruption across Chinese provinces," Energy Economics, Elsevier, vol. 98(C).
    4. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    5. Kunce, Mitch & Shogren, Jason F., 2007. "Destructive interjurisdictional competition: Firm, capital and labor mobility in a model of direct emission control," Ecological Economics, Elsevier, vol. 60(3), pages 543-549, January.
    6. Bélaïd, Fateh & Youssef, Meriem, 2017. "Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria," Energy Policy, Elsevier, vol. 102(C), pages 277-287.
    7. Muhammad Awais Baloch & Ilhan Ozturk & Festus Victor Bekun & Danish Khan, 2021. "Modeling the dynamic linkage between financial development, energy innovation, and environmental quality: Does globalization matter?," Business Strategy and the Environment, Wiley Blackwell, vol. 30(1), pages 176-184, January.
    8. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    9. Chigozie Nelson Nkalu & Richardson Kojo Edeme, 2019. "Environmental Hazards and Life Expectancy in Africa: Evidence From GARCH Model," SAGE Open, , vol. 9(1), pages 21582440198, February.
    10. Jeyhun I. Mikayilov & Marzio Galeotti & Fakhri J. Hasanov, 2018. "The Impact of Economic Growth on CO2 Emissions in Azerbaijan," IEFE Working Papers 102, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    11. Lupi, Veronica & Marsiglio, Simone, 2021. "Population growth and climate change: A dynamic integrated climate-economy-demography model," Ecological Economics, Elsevier, vol. 184(C).
    12. Yulan Lv & Wei Chen & Jianquan Cheng, 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    13. Belbute, José M. & Pereira, Alfredo M., 2020. "Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal," Energy Policy, Elsevier, vol. 144(C).
    14. Suleman Sarwar & Dalia Streimikiene & Rida Waheed & Zouheir Mighri, 2021. "Revisiting the empirical relationship among the main targets of sustainable development: Growth, education, health and carbon emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 419-440, March.
    15. Sana Naseem, 2021. "The Role of Tourism in Economic Growth: Empirical Evidence from Saudi Arabia," Economies, MDPI, vol. 9(3), pages 1-12, August.
    16. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    17. Bismark Ameyaw & Li Yao, 2018. "Analyzing the Impact of GDP on CO 2 Emissions and Forecasting Africa’s Total CO 2 Emissions with Non-Assumption Driven Bidirectional Long Short-Term Memory," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    18. Lingui Qin & Syed Raheem & Muntasir Murshed & Xu Miao & Zeeshan Khan & Dervis Kirikkaleli, 2021. "Does financial inclusion limit carbon dioxide emissions? Analyzing the role of globalization and renewable electricity output," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1138-1154, November.
    19. Danish, & Baloch, Muhammad Awais & Wang, Bo, 2019. "Analyzing the role of governance in CO2 emissions mitigation: The BRICS experience," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 119-125.
    20. Tonn, Bruce & Eisenberg, Joel, 2007. "The aging US population and residential energy demand," Energy Policy, Elsevier, vol. 35(1), pages 743-745, January.
    21. Joseph I. Amuka & Fredrick O. Asogwa & Romanus O. Ugwuanyi & Ambrose N. Omeje & Tochukwu Onyechi, 2018. "Climate change and Life Expectancy in a Developing Country: Evidence from Greenhouse Gas (CO2) Emission in Nigeria," International Journal of Economics and Financial Issues, Econjournals, vol. 8(4), pages 113-119.
    22. Muhammad Uzair Ali & Zhimin Gong & Muhammad Ubaid Ali & Xiong Wu & Chen Yao, 2021. "Fossil energy consumption, economic development, inward FDI impact on CO2 emissions in Pakistan: Testing EKC hypothesis through ARDL model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3210-3221, July.
    23. Galinato, Gregmar I. & Galinato, Suzette P., 2012. "The effects of corruption control, political stability and economic growth on deforestation-induced carbon dioxide emissions," Environment and Development Economics, Cambridge University Press, vol. 17(1), pages 67-90, February.
    24. Liddle, Brantley & Lung, Sidney, 2010. "Age-Structure, Urbanization, and Climate Change in Developed Countries: Revisiting STIRPAT for Disaggregated Population and Consumption-Related Environmental Impacts," MPRA Paper 59579, University Library of Munich, Germany.
    25. Tong Zhang & Chaofan Chen, 2018. "The Effect of Public Participation on Environmental Governance in China–Based on the Analysis of Pollutants Emissions Employing a Provincial Quantification," Sustainability, MDPI, vol. 10(7), pages 1-20, July.
    26. Bruce Tonn & Greg Waidley & Carl Petrich, 2001. "The Ageing US Population and Environmental Policy," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 44(6), pages 851-876.
    27. Shahid Ali & Eyup Dogan & Fuzhong Chen & Zeeshan Khan, 2021. "International trade and environmental performance in top ten‐emitters countries: The role of eco‐innovation and renewable energy consumption," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 378-387, March.
    28. Adedoyin, Festus Fatai & Bekun, Festus Victor & Driha, Oana M. & Balsalobre-Lorente, Daniel, 2020. "The effects of air transportation, energy, ICT and FDI on economic growth in the industry 4.0 era: Evidence from the United States," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    29. Ahmad, Ashfaq & Zhao, Yuhuan & Shahbaz, Muhammad & Bano, Sadia & Zhang, Zhonghua & Wang, Song & Liu, Ya, 2016. "Carbon emissions, energy consumption and economic growth: An aggregate and disaggregate analysis of the Indian economy," Energy Policy, Elsevier, vol. 96(C), pages 131-143.
    30. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Khan, Naveed R. & Mirza, Faisal Mehmood & Hou, Fujun & Kirmani, Syed Ali Ashiq, 2019. "The impact of natural resources, human capital, and foreign direct investment on the ecological footprint: The case of the United States," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pata, Ugur Korkut & Ertugrul, Hasan Murat, 2023. "Do the Kyoto Protocol, geopolitical risks, human capital and natural resources affect the sustainability limit? A new environmental approach based on the LCC hypothesis," Resources Policy, Elsevier, vol. 81(C).
    2. Hussain, Muzzammil & Wang, Wei & Wang, Yiwen, 2022. "Natural resources, consumer prices and financial development in China: Measures to control carbon emissions and ecological footprints," Resources Policy, Elsevier, vol. 78(C).
    3. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Environmental stewardship: Analyzing the dynamic impact of renewable energy, foreign remittances, and globalization index on China's CO2 emissions," Renewable Energy, Elsevier, vol. 201(P1), pages 418-425.
    4. Pata, Ugur Korkut, 2018. "The influence of coal and noncarbohydrate energy consumption on CO2 emissions: Revisiting the environmental Kuznets curve hypothesis for Turkey," Energy, Elsevier, vol. 160(C), pages 1115-1123.
    5. Karaaslan, Abdulkerim & Çamkaya, Serhat, 2022. "The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey," Renewable Energy, Elsevier, vol. 190(C), pages 457-466.
    6. Hossain, Md. Emran & Islam, Md. Sayemul & Bandyopadhyay, Arunava & Awan, Ashar & Hossain, Mohammad Razib & Rej, Soumen, 2022. "Mexico at the crossroads of natural resource dependence and COP26 pledge: Does technological innovation help?," Resources Policy, Elsevier, vol. 77(C).
    7. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    8. Xin, Yongrong & Ajaz, Tahseen & Shahzad, Mohsin & Luo, Jia, 2023. "How productive capacities influence trade-adjusted resources consumption in China: Testing resource-based EKC," Resources Policy, Elsevier, vol. 81(C).
    9. Amri, Fethi & Zaied, Younes Ben & Lahouel, Bechir Ben, 2019. "ICT, total factor productivity, and carbon dioxide emissions in Tunisia," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 212-217.
    10. Pata, Ugur Korkut & Caglar, Abdullah Emre, 2021. "Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break," Energy, Elsevier, vol. 216(C).
    11. Dervis Kirikkaleli & Hasan Güngör & Tomiwa Sunday Adebayo, 2022. "Consumption‐based carbon emissions, renewable energy consumption, financial development and economic growth in Chile," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1123-1137, March.
    12. Pal, Debdatta & Mitra, Subrata Kumar, 2017. "The environmental Kuznets curve for carbon dioxide in India and China: Growth and pollution at crossroad," Journal of Policy Modeling, Elsevier, vol. 39(2), pages 371-385.
    13. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    14. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    15. Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji & Bekun, Festus Victor & Altuntaş, Mehmet, 2021. "Coal energy consumption beat renewable energy consumption in South Africa: Developing policy framework for sustainable development," Renewable Energy, Elsevier, vol. 175(C), pages 1012-1024.
    16. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.
    17. Pata, Ugur Korkut & Isik, Cem, 2021. "Determinants of the load capacity factor in China: A novel dynamic ARDL approach for ecological footprint accounting," Resources Policy, Elsevier, vol. 74(C).
    18. Hilaire Nkengfack & Hervé Kaffo Fotio & Armand Totouom, 2021. "How Does the Shadow Economy Affect Environmental Quality in Sub-Saharan Africa? Evidence from Heterogeneous Panel Estimations," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(4), pages 1635-1651, December.
    19. Nahid Sultana & Mohammad Mafizur Rahman & Rasheda Khanam, 2022. "Environmental kuznets curve and causal links between environmental degradation and selected socioeconomic indicators in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5426-5450, April.
    20. AM Priyangani Adikari & Haiyun Liu & DMSLB Dissanayake & Manjula Ranagalage, 2023. "Human Capital and Carbon Emissions: The Way forward Reducing Environmental Degradation," Sustainability, MDPI, vol. 15(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:766-:d:1021834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.