IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8269-d600383.html
   My bibliography  Save this article

Modeling Non-Cooperative Water Use in River Basins

Author

Listed:
  • Tesfaye Woldeyohanes

    (World Agroforestry (ICRAF), UN Avenue, Gigiri, P.O. Box 30677, Nairobi 00100, Kenya
    Institute for Food and Resource Economics (ILR), University of Bonn, Nußallee 21, 53115 Bonn, Germany)

  • Arnim Kuhn

    (Institute for Food and Resource Economics (ILR), University of Bonn, Nußallee 21, 53115 Bonn, Germany)

  • Thomas Heckelei

    (Institute for Food and Resource Economics (ILR), University of Bonn, Nußallee 21, 53115 Bonn, Germany)

  • Lalisa Duguma

    (World Agroforestry (ICRAF), UN Avenue, Gigiri, P.O. Box 30677, Nairobi 00100, Kenya)

Abstract

Conventional water use and management models have mostly emulated purposefully designed water use systems where centralized governance and rule-based cooperation of agents are assumed. However, water use systems, whether actively governed or not, involve multiple, independent decision makers with diverse and often conflicting interests. In the absence of adequate water management institutions to effectively coordinate decision processes on water use, water users’ behaviors are rather likely to be non-cooperative, meaning that actions by individual users generate externalities and lead to sub-optimal water use efficiency. The objective of this review is to evaluate the advantages and disadvantages of recently proposed modeling systems dealing with non-cooperative water use regarding their ability to realistically represent the features of complex hydrological and socioeconomic processes and their tractability in terms of modeling tools and computational efficiency. For that purpose, we conducted a systematic review of 47 studies that address non-cooperative water use in decentralized modeling approaches. Even though such a decentralized approach should aim to model decisions by individual water users in non-cooperative water use, we find that most studies assumed the presence of a coordinating agency or market in their model. It also turns out that most of these models employed a solution procedure that sequentially solved independent economic decisions based on pre-defined conditions and heuristics, while only few modeling approaches offered simultaneous solution algorithms. We argue that this approach cannot adequately capture economic trade-offs in resource allocation, in contrast to models with simultaneous solution procedures.

Suggested Citation

  • Tesfaye Woldeyohanes & Arnim Kuhn & Thomas Heckelei & Lalisa Duguma, 2021. "Modeling Non-Cooperative Water Use in River Basins," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8269-:d:600383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Xiao & Liping Fang & Keith W. Hipel, 2018. "Centralized and Decentralized Approaches to Water Demand Management," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
    2. Olivier Barreteau & François Bousquet, 2000. "SHADOC: a multi‐agent model to tackle viability of irrigated systems," Annals of Operations Research, Springer, vol. 94(1), pages 139-162, January.
    3. Ambec, Stefan & Sprumont, Yves, 2002. "Sharing a River," Journal of Economic Theory, Elsevier, vol. 107(2), pages 453-462, December.
    4. Barreteau, O. & Bousquet, F. & Millier, C. & Weber, J., 2004. "Suitability of Multi-Agent Simulations to study irrigated system viability: application to case studies in the Senegal River Valley," Agricultural Systems, Elsevier, vol. 80(3), pages 255-275, June.
    5. Masih Akhbari & Neil Grigg, 2013. "A Framework for an Agent-Based Model to Manage Water Resources Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4039-4052, September.
    6. Wang, Lizhong & Fang, Liping & Hipel, Keith W., 2008. "Basin-wide cooperative water resources allocation," European Journal of Operational Research, Elsevier, vol. 190(3), pages 798-817, November.
    7. Bardhan, Pranab, 1993. "Analytics of the institutions of informal cooperation in rural development," World Development, Elsevier, vol. 21(4), pages 633-639, April.
    8. Karthik Panchanathan & Robert Boyd, 2004. "Indirect reciprocity can stabilize cooperation without the second-order free rider problem," Nature, Nature, vol. 432(7016), pages 499-502, November.
    9. Bhaduri, Anik & Barbier, Edward B., 2008. "International water transfer and sharing: the case of the Ganges River," Environment and Development Economics, Cambridge University Press, vol. 13(1), pages 29-51, February.
    10. Abraham M. Hirsch, 1961. "Some Aspects of River Utilization in Arid Areas: The Hydro‐economics of Inadequate Supply," American Journal of Economics and Sociology, Wiley Blackwell, vol. 20(3), pages 271-271, April.
    11. Mehmet Kucukmehmetoglu, 2009. "A Game Theoretic Approach to Assess the Impacts of Major Investments on Transboundary Water Resources: The Case of the Euphrates and Tigris," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3069-3099, December.
    12. Britz, Wolfgang & Kuhn, Arnim, 2011. "Can Hydro-economic River Basis Models Simulate Water Shadow Prices Under Asymmetric Access?," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114272, European Association of Agricultural Economists.
    13. Bauman, Allison & Goemans, Christopher & Pritchett, James & Thilmany McFadden, Dawn, 2015. "Modeling Imperfectly Competitive Water Markets in the Western U.S," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 201448, Agricultural and Applied Economics Association.
    14. Madani, Kaveh & Dinar, Ariel, 2012. "Non-cooperative institutions for sustainable common pool resource management: Application to groundwater," Ecological Economics, Elsevier, vol. 74(C), pages 34-45.
    15. Farhadi, Saber & Nikoo, Mohammad Reza & Rakhshandehroo, Gholam Reza & Akhbari, Masih & Alizadeh, Mohammad Reza, 2016. "An agent-based-nash modeling framework for sustainable groundwater management: A case study," Agricultural Water Management, Elsevier, vol. 177(C), pages 348-358.
    16. Erik Ansink & Arjan Ruijs, 2008. "Climate Change and the Stability of Water Allocation Agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(2), pages 249-266, October.
    17. Thomas Berger & Regina Birner & Nancy Mccarthy & JosÉ DíAz & Heidi Wittmer, 2007. "Capturing the complexity of water uses and water users within a multi-agent framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 129-148, January.
    18. Daron Acemoglu, 2006. "A Simple Model of Inefficient Institutions," Scandinavian Journal of Economics, Wiley Blackwell, vol. 108(4), pages 515-546, December.
    19. Robert A. Young & Hubert J. Morel-Seytoux & John T. Daubert, 1986. "Evaluating Institutional Alternatives for Managing an Interrelated Stream-Aquifer System," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 787-797.
    20. Olivier Barreteau & Patrice Garin & Alexandre Dumontier & Geraldine Abrami & Flavie Cernesson, 2003. "Agent-Based Facilitation of Water Allocation: Case Study in the Drome River Valley," Group Decision and Negotiation, Springer, vol. 12(5), pages 441-461, September.
    21. Pande, Saket & van den Boom, Bart & Savenije, Hubert H.G. & Gosain, Ashvani K., 2011. "Water valuation at basin scale with application to western India," Ecological Economics, Elsevier, vol. 70(12), pages 2416-2428.
    22. Cai, Ximing & Ringler, Claudia & Rosegrant, Mark W., 2006. "Modeling water resources management at the basin level: methodology and application to the Maipo River Basin," Research reports 149, International Food Policy Research Institute (IFPRI).
    23. McKinney, D. C. & Cai, X. & Rosegrant, M. W. & Ringler, C. & Scott, C. A., 1999. "Modeling water resources management at the basin level: review and future directions," IWMI Books, Reports H024075, International Water Management Institute.
    24. Maksud Bekchanov, 2015. "Review of hydro-economic models to address river basin management problems: structure, applications and research gaps," IWMI Working Papers H047337, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauman, Allison & Goemans, Christopher & Pritchett, James & Thilmany McFadden, Dawn, 2015. "Modeling Imperfectly Competitive Water Markets in the Western U.S," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 201448, Agricultural and Applied Economics Association.
    2. Ghazali, Mahboubeh & Honar, Tooraj & Nikoo, Mohammad Reza, 2018. "A hybrid TOPSIS-agent-based framework for reducing the water demand requested by stakeholders with considering the agents’ characteristics and optimization of cropping pattern," Agricultural Water Management, Elsevier, vol. 199(C), pages 71-85.
    3. Erik Ansink & Harold Houba, 2014. "The Economics of Transboundary River Management," Tinbergen Institute Discussion Papers 14-132/VIII, Tinbergen Institute.
    4. Alireza Nouri & Bahram Saghafian & Majid Delavar & Mohammad Reza Bazargan-Lari, 2019. "Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3707-3720, September.
    5. Ambec, Stefan & Dinar, Ariel, 2010. "Hot Stuff: Would Climate Change Alter Transboundary Water Sharing Treaties?," LERNA Working Papers 10.15.321, LERNA, University of Toulouse.
    6. Zhenliang Liao & Phillip Hannam, 2013. "The Mekong Game: Achieving an All-win Situation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2611-2622, May.
    7. Chakaphon Singto & Martijn Vries & Gert Jan Hofstede & Luuk Fleskens, 2021. "Ex Ante Impact Assessment of Reservoir Construction Projects for Different Stakeholders Using Agent-Based Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1047-1064, February.
    8. Cabo, Francisco & Erdlenbruch, Katrin & Tidball, Mabel, 2014. "Dynamic management of water transfer between two interconnected river basins," Resource and Energy Economics, Elsevier, vol. 37(C), pages 17-38.
    9. Bhaduri, Anik & Perez, Nicostrato D. & Liebe, Jens, 2008. "Scope and Sustainability of Cooperation in Transboundary Water Sharing of the Volta River," Discussion Papers 43324, University of Bonn, Center for Development Research (ZEF).
    10. Elinor Ostrom, 2010. "Analyzing collective action," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 155-166, November.
    11. Dinar, Ariel & Blankespoor, Brian & Dinar, Shlomi & Kurukulasuriya, Pradeep, 2010. "The impact of water supply variability on treaty cooperation between international bilateral river basin riparian states," Policy Research Working Paper Series 5307, The World Bank.
    12. Ambec, Stefan & Dinar, Ariel & McKinney, Daene, 2013. "Water sharing agreements sustainable to reduced flows," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 639-655.
    13. Abraham, Anand & Ramachandran, Parthasarathy, 2021. "The welfare implications of transboundary storage and dam ownership on river water trade," Mathematical Social Sciences, Elsevier, vol. 109(C), pages 18-27.
    14. Ansink, Erik & Houba, Harold, 2016. "Sustainable agreements on stochastic river flow," Resource and Energy Economics, Elsevier, vol. 44(C), pages 92-117.
    15. Mojtaba Sadegh & Najmeh Mahjouri & Reza Kerachian, 2010. "Optimal Inter-Basin Water Allocation Using Crisp and Fuzzy Shapley Games," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2291-2310, August.
    16. Bell, Andrew & Zhu, Tingju & Xie, Hua & Ringler, Claudia, 2014. "Climate–water interactions—Challenges for improved representation in integrated assessment models," Energy Economics, Elsevier, vol. 46(C), pages 510-521.
    17. Gudmundsson, Jens & Hougaard, Jens Leth & Ko, Chiu Yu, 2019. "Decentralized mechanisms for river sharing," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 67-81.
    18. Anbari, Mohammad Javad & Zarghami, Mahdi & Nadiri, Ata-Allah, 2021. "An uncertain agent-based model for socio-ecological simulation of groundwater use in irrigation: A case study of Lake Urmia Basin, Iran," Agricultural Water Management, Elsevier, vol. 249(C).
    19. Cai, Ximing & Ringler, Claudia & You, Jiing-Yun, 2008. "Substitution between water and other agricultural inputs: Implications for water conservation in a River Basin context," Ecological Economics, Elsevier, vol. 66(1), pages 38-50, May.
    20. Mojtaba Sadegh & Reza Kerachian, 2011. "Water Resources Allocation Using Solution Concepts of Fuzzy Cooperative Games: Fuzzy Least Core and Fuzzy Weak Least Core," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2543-2573, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8269-:d:600383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.