IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2446-d225881.html
   My bibliography  Save this article

The Eco-Costs of Material Scarcity, a Resource Indicator for LCA, Derived from a Statistical Analysis on Excessive Price Peaks

Author

Listed:
  • Joost Vogtländer

    (Faculty of Industrial Design Engineering, Department Product Innovation Management, Delft University of Technology, 2628 CE Delft, The Netherlands)

  • David Peck

    (Faculty of Architecture and Built Environment, Department Architectural Engineering and Technology, Critical Materials and Circular Built Environment, Delft University of Technology, 2628 BL Delft, The Netherlands)

  • Dorota Kurowicka

    (Faculty of Electrical Engineering, Mathematics, and Computer Science, Department Applied Mathematics, Delft University of Technology, 2628 XE Delft, The Netherlands)

Abstract

The availability of resources is crucial for the socio-economic stability of our society. For more than two decades, there was a debate on how to structure this issue within the context of life-Cycle assessment (LCA). The classical approach with LCA is to describe “scarcity” for future generations (100–1000 years) in terms of absolute depletion. The problem, however, is that the long-term availability is simply not known (within a factor of 100–1000). Outside the LCA community, the short-term supply risks (10–30 years) were predicted, resulting in the list of critical raw materials (CRM) of the European Union (EU), and the British risk list. The methodology used, however, cannot easily be transposed and applied into LCA calculations. This paper presents a new approach to the issue of short-term material supply shortages, based on subsequent sudden price jumps, which can lead to socio-economic instability. The basic approach is that each resource is characterized by its own specific supply chain with its specific price volatility. The eco-costs of material scarcity are derived from the so-called value at risk (VAR), a well-known statistical risk indicator in the financial world. This paper provides a list of indicators for 42 metals. An advantage of the system is that it is directly related to business risks, and is relatively easy to understand. A disadvantage is that “statistics of the past” might not be replicated in the future (e.g., when changing from structural oversupply to overdemand, or vice versa, which appeared an issue for two companion metals over the last 30 years). Further research is recommended to improve the statistics.

Suggested Citation

  • Joost Vogtländer & David Peck & Dorota Kurowicka, 2019. "The Eco-Costs of Material Scarcity, a Resource Indicator for LCA, Derived from a Statistical Analysis on Excessive Price Peaks," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2446-:d:225881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Speirs, Jamie & McGlade, Christophe & Slade, Raphael, 2015. "Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass," Energy Policy, Elsevier, vol. 87(C), pages 654-664.
    2. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    3. Achzet, Benjamin & Helbig, Christoph, 2013. "How to evaluate raw material supply risks—an overview," Resources Policy, Elsevier, vol. 38(4), pages 435-447.
    4. Sprecher, Benjamin & Reemeyer, Laurie & Alonso, Elisa & Kuipers, Koen & Graedel, Thomas E., 2017. "How “black swan” disruptions impact minor metals," Resources Policy, Elsevier, vol. 54(C), pages 88-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nine Klaassen & Arno Scheepens & Bas Flipsen & Joost Vogtlander, 2020. "Eco-Efficient Value Creation of Residential Street Lighting Systems by Simultaneously Analysing the Value, the Costs and the Eco-Costs during the Design and Engineering Phase," Energies, MDPI, vol. 13(13), pages 1-18, June.
    2. Korba, Peter & Balli, Ozgur & Caliskan, Hakan & Al-Rabeei, Samer & Kale, Utku, 2023. "Energy, exergy, economic, environmental, and sustainability assessments of the CFM56-3 series turbofan engine used in the aviation sector," Energy, Elsevier, vol. 269(C).
    3. Wang, Heming & Wang, Guoqiang & Qi, Jianchuan & Schandl, Heinz & Li, Yumeng & Feng, Cuiyang & Yang, Xuechun & Wang, Yao & Wang, Xinzhe & Liang, Sai, 2020. "Scarcity-weighted fossil fuel footprint of China at the provincial level," Applied Energy, Elsevier, vol. 258(C).
    4. Maria Leonor Carvalho & Giulio Mela & Andrea Temporelli & Elisabetta Brivio & Pierpaolo Girardi, 2022. "Sodium-Ion Batteries with Ti 1 Al 1 TiC 1.85 MXene as Negative Electrode: Life Cycle Assessment and Life Critical Resource Use Analysis," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    5. Natālija Cudečka-Puriņa & Dzintra Atstāja & Viktor Koval & Māris Purviņš & Pavlo Nesenenko & Oleksandr Tkach, 2022. "Achievement of Sustainable Development Goals through the Implementation of Circular Economy and Developing Regional Cooperation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    6. Rosalie Arendt & Till M. Bachmann & Masaharu Motoshita & Vanessa Bach & Matthias Finkbeiner, 2020. "Comparison of Different Monetization Methods in LCA: A Review," Sustainability, MDPI, vol. 12(24), pages 1-39, December.
    7. Tom B. J. Coenen & João Santos & Sonja A. A. M. Fennis & Johannes I. M. Halman, 2021. "Development of a bridge circularity assessment framework to promote resource efficiency in infrastructure projects," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 288-304, April.
    8. Giulio Mela & Maria Leonor Carvalho & Andrea Temporelli & Pierpaolo Girardi, 2021. "The Commodity Life Cycle Costing Indicator. An Economic Measure of Natural Resource Use in the Life Cycle," Sustainability, MDPI, vol. 13(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daw, Georges, 2017. "Security of mineral resources: A new framework for quantitative assessment of criticality," Resources Policy, Elsevier, vol. 53(C), pages 173-189.
    2. Henckens, M.L.C.M. & Driessen, P.P.J. & Ryngaert, C. & Worrell, E., 2016. "The set-up of an international agreement on the conservation and sustainable use of geologically scarce mineral resources," Resources Policy, Elsevier, vol. 49(C), pages 92-101.
    3. Burda, Michael C. & Zessner-Spitzenberg, Leopold, 2024. "Greenhouse Gas Mitigation and Price-Driven Growth in a Solow-Swan Economy with an Environmental Limit," IZA Discussion Papers 16771, Institute of Labor Economics (IZA).
    4. Dale W. Henderson & Stephen W. Salant, 1976. "Market anticipations, government policy, and the price of gold," International Finance Discussion Papers 81, Board of Governors of the Federal Reserve System (U.S.).
    5. Hala Abu-Kalla & Ruslana Rachel Palatnik & Ofira Ayalon & Mordechai Shechter, 2020. "Hoard or Exploit? Intergenerational Allocation of Exhaustible Natural Resources," Energies, MDPI, vol. 13(24), pages 1-20, December.
    6. John Baffes & Cristina Savescu, 2014. "Monetary conditions and metal prices," Applied Economics Letters, Taylor & Francis Journals, vol. 21(7), pages 447-452, May.
    7. Siebert, Horst, 1982. "Das intertemporale Angebot eines ressourcenabbauenden Unternehmens," Open Access Publications from Kiel Institute for the World Economy 3563, Kiel Institute for the World Economy (IfW Kiel).
    8. Paul Welfens & Jens Perret & Deniz Erdem, 2010. "Global economic sustainability indicator: analysis and policy options for the Copenhagen process," International Economics and Economic Policy, Springer, vol. 7(2), pages 153-185, August.
    9. Eduardo Ley & Molly K. Macauley & Stephen W. Salant, "undated". "Spatially and intertemporally efficient waste management: The costs of interstate flow control," Working Papers 97-07, FEDEA.
    10. Haugom, Erik & Mydland, Ørjan & Pichler, Alois, 2016. "Long term oil prices," Energy Economics, Elsevier, vol. 58(C), pages 84-94.
    11. Devarajan, Shantayanan & Fisher, Anthony C, 1981. "Hotelling's "Economics of Exhaustible Resources": Fifty Years Later," Journal of Economic Literature, American Economic Association, vol. 19(1), pages 65-73, March.
    12. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    13. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    14. Grimaud, Andre & Rouge, Luc, 2005. "Polluting non-renewable resources, innovation and growth: welfare and environmental policy," Resource and Energy Economics, Elsevier, vol. 27(2), pages 109-129, June.
    15. Seyhan, Demet & Weikard, Hans-Peter & van Ierland, Ekko, 2012. "An economic model of long-term phosphorus extraction and recycling," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 103-108.
    16. Leach, Andrew & Mason, Charles F. & Veld, Klaas van ‘t, 2011. "Co-optimization of enhanced oil recovery and carbon sequestration," Resource and Energy Economics, Elsevier, vol. 33(4), pages 893-912.
    17. Cécile Couharde & Vincent Géronimi & Armand Taranco, 2012. "Les hausses récentes des cours des matières premières traduisent-elles l'entrée dans un régime de prix plus élevés ?," Revue Tiers-Monde, Armand Colin, vol. 0(3), pages 13-34.
    18. John Boyce & Jeffrey Robert Church & Lucia Vojtassak, "undated". "Capacity Constraints in Durable Goods Monopoly: Coase and Hotelling," Working Papers 2012-07, Department of Economics, University of Calgary, revised 08 Aug 2012.
    19. Hansen, James & Gross, Isaac, 2018. "Commodity price volatility with endogenous natural resources," European Economic Review, Elsevier, vol. 101(C), pages 157-180.
    20. Mark Kagan & Frederick Ploeg & Cees Withagen, 2015. "Battle for Climate and Scarcity Rents: Beyond the Linear-Quadratic Case," Dynamic Games and Applications, Springer, vol. 5(4), pages 493-522, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2446-:d:225881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.