IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5627-d275841.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

An Evaluation Framework for the Planning of Electric Car-Sharing Systems: A Combination Model of AHP-CBA-VD

Author

Listed:
  • Yixi Xue

    (Management School, Shanghai University, Shanghai 200444, China
    School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Yi Zhang

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Yi Chen

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

Abstract

The combination of car-sharing and electric vehicles can increase the acceptance of electric vehicles and facilitate car-sharing to be a more sustainable means of transport. However, this also poses more challenges for the good planning of electric car-sharing systems. To assist car-sharing companies in improving the planning decisions, this paper developed an evaluation framework from a comprehensive view. In the first step, four evaluation criteria were identified according to the planning process: construction of stations; routine inspection; vehicle usability and relocation management; and the maintenance and replacement of stations. Then, a combinatorial method based on analytic hierarchy process (AHP), cost-benefit analysis (CBA), and Voronoi diagram (VD) is developed to determine the relative weight of the four criteria and evaluate the alternative. Finally, the evaluation framework was applied in a realistic case of EVCARD, which is the most influential electric car-sharing company in China. The performance of two different operational districts of EVCARD—Jingan and Changning—were compared. The results showed that vehicle usability and relocation management is the greatest criterion influencing the planning performance of the electric car-sharing system in China, and that routine inspection is a negligible but important factor. According to the relative scores, Jiagan District performed better than Changning district.

Suggested Citation

  • Yixi Xue & Yi Zhang & Yi Chen, 2019. "An Evaluation Framework for the Planning of Electric Car-Sharing Systems: A Combination Model of AHP-CBA-VD," Sustainability, MDPI, vol. 11(20), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5627-:d:275841
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rabbitt, Niamh & Ghosh, Bidisha, 2016. "Economic and environmental impacts of organised Car Sharing Services: A case study of Ireland," Research in Transportation Economics, Elsevier, vol. 57(C), pages 3-12.
    2. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2015. "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, Elsevier, vol. 240(3), pages 718-733.
    3. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    4. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    5. Prieto, Marc & Baltas, George & Stan, Valentina, 2017. "Car sharing adoption intention in urban areas: What are the key sociodemographic drivers?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 218-227.
    6. Brandstätter, Georg & Kahr, Michael & Leitner, Markus, 2017. "Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 17-35.
    7. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    8. Liu, Beibei & Wu, Qiaoran & Wang, Feng & Zhang, Bing, 2019. "Is straw return-to-field always beneficial? Evidence from an integrated cost-benefit analysis," Energy, Elsevier, vol. 171(C), pages 393-402.
    9. Wang, Ning & Tang, Linhao & Pan, Huizhong, 2018. "Analysis of public acceptance of electric vehicles: An empirical study in Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 284-291.
    10. Eliasson, Jonas & Fosgerau, Mogens, 2019. "Cost-benefit analysis of transport improvements in the presence of spillovers, matching and an income tax," Economics of Transportation, Elsevier, vol. 18(C), pages 1-9.
    11. Susan Shaheen & Nelson Chan & Helen Micheaux, 2015. "One-way carsharing’s evolution and operator perspectives from the Americas," Transportation, Springer, vol. 42(3), pages 519-536, May.
    12. Nourinejad, Mehdi & Zhu, Sirui & Bahrami, Sina & Roorda, Matthew J., 2015. "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 98-113.
    13. Elvezia M. Cepolina & Alessandro Farina & Catherine Holloway & Nick Tyler, 2015. "Innovative strategies for urban car-sharing systems and a simulator to assess their performance," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(4), pages 375-391, June.
    14. Wang, Mingquan & Martin, Elliot W & Shaheen, Susan A, 2012. "Carsharing in Shanghai, China: Analysis of Behavioural Response to Local Survey and Potential Competition," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4106z3tc, Institute of Transportation Studies, UC Berkeley.
    15. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2017. "An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 214-237.
    16. Johanna Kopp & Regine Gerike & Kay Axhausen, 2015. "Do sharing people behave differently? An empirical evaluation of the distinctive mobility patterns of free-floating car-sharing members," Transportation, Springer, vol. 42(3), pages 449-469, May.
    17. Li, Xiaopeng & Ma, Jiaqi & Cui, Jianxun & Ghiasi, Amir & Zhou, Fang, 2016. "Design framework of large-scale one-way electric vehicle sharing systems: A continuum approximation model," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 21-45.
    18. Shaheen, Susan PhD & Chan, Nelson & Bansal, Apaar & Cohen, Adam, 2015. "Shared Mobility: A Sustainability & Technologies Workshop: Definitions, Industry Developments, and Early Understanding," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2f61q30s, Institute of Transportation Studies, UC Berkeley.
    19. Erbaş, Mehmet & Kabak, Mehmet & Özceylan, Eren & Çetinkaya, Cihan, 2018. "Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis," Energy, Elsevier, vol. 163(C), pages 1017-1031.
    20. Ly, Pham Thi Minh & Lai, Wen-Hsiang & Hsu, Chiung-Wen & Shih, Fang-Yin, 2018. "Fuzzy AHP analysis of Internet of Things (IoT) in enterprises," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 1-13.
    21. Gambella, Claudio & Malaguti, Enrico & Masini, Filippo & Vigo, Daniele, 2018. "Optimizing relocation operations in electric car-sharing," Omega, Elsevier, vol. 81(C), pages 234-245.
    22. Correia, Gonçalo Homem de Almeida & Antunes, António Pais, 2012. "Optimization approach to depot location and trip selection in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 233-247.
    23. Ghimire, Laxman Prasad & Kim, Yeonbae, 2018. "An analysis on barriers to renewable energy development in the context of Nepal using AHP," Renewable Energy, Elsevier, vol. 129(PA), pages 446-456.
    24. Massiani, Jérôme, 2015. "Cost-Benefit Analysis of policies for the development of electric vehicles in Germany: Methods and results," Transport Policy, Elsevier, vol. 38(C), pages 19-26.
    25. Shaheen, Susan PhD & Chan, Nelson & Micheaux, Helen, 2015. "One-Way Carsharing's Evolution and Operator Perspectives from the Americas," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt83s1z8j4, Institute of Transportation Studies, UC Berkeley.
    26. Stillwater, Tai & Mokhtarian, Patricia L & Shaheen, Susan A, 2009. "Carsharing and the Built Environment," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6dw9d79z, Institute of Transportation Studies, UC Berkeley.
    27. Cui, Borui & Gao, Dian-ce & Wang, Shengwei & Xue, Xue, 2015. "Effectiveness and life-cycle cost-benefit analysis of active cold storages for building demand management for smart grid applications," Applied Energy, Elsevier, vol. 147(C), pages 523-535.
    28. Li, Qing & Liao, Feixiong & Timmermans, Harry J.P. & Huang, Haijun & Zhou, Jing, 2018. "Incorporating free-floating car-sharing into an activity-based dynamic user equilibrium model: A demand-side model," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 102-123.
    29. Nian, Victor & Liu, Yang & Zhong, Sheng, 2019. "Life cycle cost-benefit analysis of offshore wind energy under the climatic conditions in Southeast Asia – Setting the bottom-line for deployment," Applied Energy, Elsevier, vol. 233, pages 1003-1014.
    30. Baffoe, Gideon, 2019. "Exploring the utility of Analytic Hierarchy Process (AHP) in ranking livelihood activities for effective and sustainable rural development interventions in developing countries," Evaluation and Program Planning, Elsevier, vol. 72(C), pages 197-204.
    31. Moradi, Afsaneh & Vagnoni, Emidia, 2018. "A multi-level perspective analysis of urban mobility system dynamics: What are the future transition pathways?," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 231-243.
    32. Mounce, Richard & Nelson, John D., 2019. "On the potential for one-way electric vehicle car-sharing in future mobility systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 17-30.
    33. Nourinejad, Mehdi & Roorda, Matthew J., 2014. "A dynamic carsharing decision support system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 36-50.
    34. Rajak, Manindra & Shaw, Krishnendu, 2019. "Evaluation and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS," Technology in Society, Elsevier, vol. 59(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Xu & Xuehong Ji & Ziniu Jin, 2021. "What travel scenarios are the opportunities of car sharing?," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-22, December.
    2. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    3. Weimin Ma & Jiakai Chen & Hua Ke, 2021. "Electric Vehicle Assignment Considering Users’ Waiting Time," Sustainability, MDPI, vol. 13(23), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    2. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    3. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Chang, Ximing & Wu, Jianjun & Correia, Gonçalo Homem de Almeida & Sun, Huijun & Feng, Ziyan, 2022. "A cooperative strategy for optimizing vehicle relocations and staff movements in cities where several carsharing companies operate simultaneously," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    5. Xu, Min & Meng, Qiang & Liu, Zhiyuan, 2018. "Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 60-82.
    6. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.
    7. Huang, Kai & An, Kun & Correia, Gonçalo Homem de Almeida, 2020. "Planning station capacity and fleet size of one-way electric carsharing systems with continuous state of charge functions," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1075-1091.
    8. Boyacı, Burak & Zografos, Konstantinos G., 2019. "Investigating the effect of temporal and spatial flexibility on the performance of one-way electric carsharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 244-272.
    9. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    10. Lin, Dung-Ying & Kuo, Jia-Kai, 2021. "The vehicle deployment and relocation problem for electric vehicle sharing systems considering demand and parking space stochasticity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    11. Çalık, Hatice & Fortz, Bernard, 2019. "A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 121-150.
    12. Nguyen, Tri K. & Hoang, Nam H. & Vu, Hai L., 2022. "A unified activity-based framework for one-way car-sharing services in multi-modal transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    13. Lu, Xiaonong & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Song, Hao & Wang, Wanying, 2020. "Charging and relocating optimization for electric vehicle car-sharing: An event-based strategy improvement approach," Energy, Elsevier, vol. 207(C).
    14. Mengwei Chen & Yilin Sun & E Owen D Waygood & Jincheng Yu & Kai Zhu, 2022. "User characteristics and service satisfaction of car sharing systems: Evidence from Hangzhou, China," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-16, February.
    15. Ren, Shuyun & Luo, Fengji & Lin, Lei & Hsu, Shu-Chien & LI, Xuran Ivan, 2019. "A novel dynamic pricing scheme for a large-scale electric vehicle sharing network considering vehicle relocation and vehicle-grid-integration," International Journal of Production Economics, Elsevier, vol. 218(C), pages 339-351.
    16. Liu, Yang & Xie, Jiaohong & Chen, Nan, 2022. "Stochastic one-way carsharing systems with dynamic relocation incentives through preference learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    17. Stefan Illgen & Michael Höck, 2020. "Establishing car sharing services in rural areas: a simulation-based fleet operations analysis," Transportation, Springer, vol. 47(2), pages 811-826, April.
    18. Bansal, Vishal & Kumar, Deepak Prakash & Roy, Debjit & Subramanian, Shankar C., 2022. "Performance evaluation and optimization of design parameters for electric vehicle-sharing platforms by considering vehicle dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    19. Wei Zhou & Haixia Wang & Victor Shi & Xiding Chen, 2022. "A Decision Model for Free-Floating Car-Sharing Providers for Sustainable and Resilient Supply Chains," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    20. Zhang, Si & Sun, Huijun & Liu, Yang & Lv, Ying & Wu, Jianjun & Feng, Xiaoyan, 2024. "Carsharing equitable relocation problem: A two-stage stochastic programming approach with learning-embedded endogenous uncertainty in demand," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5627-:d:275841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.