IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13484-d695989.html
   My bibliography  Save this article

Electric Vehicle Assignment Considering Users’ Waiting Time

Author

Listed:
  • Weimin Ma

    (School of Economics and Management, Tongji University, 1239 Siping Road, Shanghai 200092, China)

  • Jiakai Chen

    (School of Economics and Management, Tongji University, 1239 Siping Road, Shanghai 200092, China)

  • Hua Ke

    (School of Economics and Management, Tongji University, 1239 Siping Road, Shanghai 200092, China)

Abstract

A one-way electric-car-sharing system is an environmentally friendly option for urban transportation systems, which can reduce air pollution and traffic congestion with effective vehicle assignment. However, electric vehicle assignment usually faces a dilemma where an insufficient battery level cannot fulfill the requests of users. It greatly affects assignment choices and order fulfillment rates, resulting in the loss of platform profit. In this study, with the assumption that the users agree to wait for a period of time during which electric vehicles can be charged to fulfill trip demands, we proposed a waiting-time policy and introduced users’ utility to measure user retention. Then, we set up a bi-level electric-vehicle assignment model with a waiting-time policy to optimize the assignment and waiting decisions. The numerical results show that under the waiting-time policy, we can achieve more profits, a higher trip fulfillment rate, and a significant improvement in vehicle utilization. It not only generates more profits for the platform but also provides a better service for users and lays a user foundation for the future development and operation.

Suggested Citation

  • Weimin Ma & Jiakai Chen & Hua Ke, 2021. "Electric Vehicle Assignment Considering Users’ Waiting Time," Sustainability, MDPI, vol. 13(23), pages 1-14, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13484-:d:695989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenxia Liu & Shuya Niu & Huiting Xu & Xiaoying Li, 2016. "A New Method to Plan the Capacity and Location of Battery Swapping Station for Electric Vehicle Considering Demand Side Management," Sustainability, MDPI, vol. 8(6), pages 1-17, June.
    2. Abdolmaleki, Mojtaba & Masoud, Neda & Yin, Yafeng, 2020. "Transit timetable synchronization for transfer time minimization," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 143-159.
    3. Nourinejad, Mehdi & Zhu, Sirui & Bahrami, Sina & Roorda, Matthew J., 2015. "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 98-113.
    4. Yang, Hai & Qin, Xiaoran & Ke, Jintao & Ye, Jieping, 2020. "Optimizing matching time interval and matching radius in on-demand ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 84-105.
    5. Basso, Rafael & Kulcsár, Balázs & Sanchez-Diaz, Ivan, 2021. "Electric vehicle routing problem with machine learning for energy prediction," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 24-55.
    6. Xu, Min & Meng, Qiang & Liu, Zhiyuan, 2018. "Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 60-82.
    7. Shaheen, Susan A & Mallery, Mark A & Kingsley, Karla J, 2012. "Personal vehicle sharing services in North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5tg7x5z0, Institute of Transportation Studies, UC Berkeley.
    8. Yixi Xue & Yi Zhang & Yi Chen, 2019. "An Evaluation Framework for the Planning of Electric Car-Sharing Systems: A Combination Model of AHP-CBA-VD," Sustainability, MDPI, vol. 11(20), pages 1-22, October.
    9. Boyacı, Burak & Zografos, Konstantinos G., 2019. "Investigating the effect of temporal and spatial flexibility on the performance of one-way electric carsharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 244-272.
    10. Huang, Kai & An, Kun & Correia, Gonçalo Homem de Almeida, 2020. "Planning station capacity and fleet size of one-way electric carsharing systems with continuous state of charge functions," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1075-1091.
    11. Fabienne T. Schiavo & Rodrigo F. Calili & Claudio F. de Magalhães & Isabel C. G. Fróes, 2021. "The Meaning of Electric Cars in the Context of Sustainable Transition in Brazil," Sustainability, MDPI, vol. 13(19), pages 1-24, October.
    12. Jorge, Diana & Molnar, Goran & de Almeida Correia, Gonçalo Homem, 2015. "Trip pricing of one-way station-based carsharing networks with zone and time of day price variations," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 461-482.
    13. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2015. "The benefits of meeting points in ride-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 36-53.
    14. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2017. "An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 214-237.
    15. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part I: Theoretical analysis in generalized scenarios," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 147-171.
    16. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    17. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2015. "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, Elsevier, vol. 240(3), pages 718-733.
    18. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2015. "The Benefits of Meeting Points in Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    20. Dunnan Liu & Tingting Zhang & Weiye Wang & Xiaofeng Peng & Mingguang Liu & Heping Jia & Shu Su, 2021. "Two-Stage Physical Economic Adjustable Capacity Evaluation Model of Electric Vehicles for Peak Shaving and Valley Filling Auxiliary Services," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    21. Zhang, Dong & Liu, Yang & He, Shuangchi, 2019. "Vehicle assignment and relays for one-way electric car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 125-146.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Boyacı, Burak & Zografos, Konstantinos G., 2019. "Investigating the effect of temporal and spatial flexibility on the performance of one-way electric carsharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 244-272.
    3. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    4. Zhang, Si & Sun, Huijun & Wang, Xu & Lv, Ying & Wu, Jianjun, 2022. "Optimization of personalized price discounting scheme for one-way station-based carsharing systems," European Journal of Operational Research, Elsevier, vol. 303(1), pages 220-238.
    5. Bansal, Vishal & Kumar, Deepak Prakash & Roy, Debjit & Subramanian, Shankar C., 2022. "Performance evaluation and optimization of design parameters for electric vehicle-sharing platforms by considering vehicle dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    6. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    7. Yang, Jie & Hu, Lu & Jiang, Yangsheng, 2022. "An overnight relocation problem for one-way carsharing systems considering employment planning, return restrictions, and ride sharing of temporary workers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    8. Bekli, Seyma & Boyacı, Burak & Zografos, Konstantinos G., 2021. "Enhancing the performance of one-way electric carsharing systems through the optimum deployment of fast chargers," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 118-139.
    9. Ren, Shuyun & Luo, Fengji & Lin, Lei & Hsu, Shu-Chien & LI, Xuran Ivan, 2019. "A novel dynamic pricing scheme for a large-scale electric vehicle sharing network considering vehicle relocation and vehicle-grid-integration," International Journal of Production Economics, Elsevier, vol. 218(C), pages 339-351.
    10. Liu, Yang & Xie, Jiaohong & Chen, Nan, 2022. "Stochastic one-way carsharing systems with dynamic relocation incentives through preference learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    11. Nguyen, Tri K. & Hoang, Nam H. & Vu, Hai L., 2022. "A unified activity-based framework for one-way car-sharing services in multi-modal transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    12. Zhao, Meng & Li, Xiaopeng & Yin, Jiateng & Cui, Jianxun & Yang, Lixing & An, Shi, 2018. "An integrated framework for electric vehicle rebalancing and staff relocation in one-way carsharing systems: Model formulation and Lagrangian relaxation-based solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 542-572.
    13. Zhang, Dong & Liu, Yang & He, Shuangchi, 2019. "Vehicle assignment and relays for one-way electric car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 125-146.
    14. Schiffer, Maximilian & Hiermann, Gerhard & Rüdel, Fabian & Walther, Grit, 2021. "A polynomial-time algorithm for user-based relocation in free-floating car sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 65-85.
    15. Ma, Tai-Yu & Rasulkhani, Saeid & Chow, Joseph Y.J. & Klein, Sylvain, 2019. "A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 417-442.
    16. Ke, Jintao & Yang, Hai & Zheng, Zhengfei, 2020. "On ride-pooling and traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 213-231.
    17. Ruijie Li & Yu (Marco) Nie & Xiaobo Liu, 2020. "Pricing Carpool Rides Based on Schedule Displacement," Transportation Science, INFORMS, vol. 54(4), pages 1134-1152, July.
    18. Huang, Wei & Huang, Wentao & Jian, Sisi, 2022. "One-way carsharing service design under demand uncertainty: A service reliability-based two-stage stochastic program approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    19. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    20. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13484-:d:695989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.