IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v131y2020icp84-105.html
   My bibliography  Save this article

Optimizing matching time interval and matching radius in on-demand ride-sourcing markets

Author

Listed:
  • Yang, Hai
  • Qin, Xiaoran
  • Ke, Jintao
  • Ye, Jieping

Abstract

With the availability of the location information of drivers and passengers, ride-sourcing platforms can now provide increasingly efficient online matching compared with physical searching and meeting performed in the traditional taxi market. The matching time interval (the time interval over which waiting passengers and idle drivers are accumulated and then subjected to peer-to-peer matching) and matching radius (or maximum allowable pick-up distance, within which waiting passengers and idle drivers can be matched or paired) are two key control variables that a platform can employ to optimize system performance in an online matching system. By appropriately extending the matching time interval, the platform can accumulate large numbers of waiting (or unserved) passengers and idle drivers and thus match the two pools with a reduced expected pick-up distance. However, if the matching time interval is excessively long, certain passengers may become impatient and even abandon their requests. Meanwhile, a short matching radius can reduce the expected pick-up distance but may decrease the matching rate as well. Therefore, the matching time interval and matching radius should be optimized to enhance system efficiency in terms of passenger waiting time, vehicle utilization, and matching rate. This study proposes a model that delineates the online matching process in ride-sourcing markets. The model is then used to examine the impact of the matching time interval and matching radius on system performance and to jointly optimize the two variables under different levels of supply and demand. Numerical experiments are conducted to demonstrate how the proposed modeling and optimization approaches can improve the real-time matching of ride-sourcing platforms.

Suggested Citation

  • Yang, Hai & Qin, Xiaoran & Ke, Jintao & Ye, Jieping, 2020. "Optimizing matching time interval and matching radius in on-demand ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 84-105.
  • Handle: RePEc:eee:transb:v:131:y:2020:i:c:p:84-105
    DOI: 10.1016/j.trb.2019.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518311731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hai & Yang, Teng, 2011. "Equilibrium properties of taxi markets with search frictions," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 696-713, May.
    2. Yang, Hai & Leung, Cowina W.Y. & Wong, S.C. & Bell, Michael G.H., 2010. "Equilibria of bilateral taxi-customer searching and meeting on networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1067-1083, September.
    3. Terry A. Taylor, 2018. "On-Demand Service Platforms," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 704-720, October.
    4. M. M. Vazifeh & P. Santi & G. Resta & S. H. Strogatz & C. Ratti, 2018. "Addressing the minimum fleet problem in on-demand urban mobility," Nature, Nature, vol. 557(7706), pages 534-538, May.
    5. Ke, Jintao & Cen, Xuekai & Yang, Hai & Chen, Xiqun & Ye, Jieping, 2019. "Modelling drivers’ working and recharging schedules in a ride-sourcing market with electric vehicles and gasoline vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 160-180.
    6. Kostas Bimpikis & Ozan Candogan & Daniela Saban, 2019. "Spatial Pricing in Ride-Sharing Networks," Operations Research, INFORMS, vol. 67(3), pages 744-769, May.
    7. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    8. Sun, Hao & Wang, Hai & Wan, Zhixi, 2019. "Model and analysis of labor supply for ride-sharing platforms in the presence of sample self-selection and endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 76-93.
    9. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    10. Hall, Jonathan D. & Palsson, Craig & Price, Joseph, 2018. "Is Uber a substitute or complement for public transit?," Journal of Urban Economics, Elsevier, vol. 108(C), pages 36-50.
    11. Arnott, Richard, 1996. "Taxi Travel Should Be Subsidized," Journal of Urban Economics, Elsevier, vol. 40(3), pages 316-333, November.
    12. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2015. "The benefits of meeting points in ride-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 36-53.
    13. Wang, Xiaolei & He, Fang & Yang, Hai & Oliver Gao, H., 2016. "Pricing strategies for a taxi-hailing platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 212-231.
    14. Xu, Zhengtian & Yin, Yafeng & Zha, Liteng, 2017. "Optimal parking provision for ride-sourcing services," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 559-578.
    15. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2015. "The Benefits of Meeting Points in Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Yang, Hai & Fung, C.S. & Wong, K.I. & Wong, S.C., 2010. "Nonlinear pricing of taxi services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    2. Ke, Jintao & Yang, Hai & Zheng, Zhengfei, 2020. "On ride-pooling and traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 213-231.
    3. Ke, Jintao & Li, Xinwei & Yang, Hai & Yin, Yafeng, 2021. "Pareto-efficient solutions and regulations of congested ride-sourcing markets with heterogeneous demand and supply," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    4. Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
    5. Zhu, Zheng & Xu, Ailing & He, Qiao-Chu & Yang, Hai, 2021. "Competition between the transportation network company and the government with subsidies to public transit riders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Zhou, Yaqian & Yang, Hai & Ke, Jintao & Wang, Hai & Li, Xinwei, 2022. "Competition and third-party platform-integration in ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 76-103.
    7. Zhang, Kenan & Nie, Yu (Marco), 2021. "To pool or not to pool: Equilibrium, pricing and regulation," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 59-90.
    8. Zhang, Yufeng & Khani, Alireza, 2021. "Integrating transit systems with ride-sourcing services: A study on the system users’ stochastic equilibrium problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 95-123.
    9. Li, Baicheng & Szeto, W.Y., 2021. "Modeling and analyzing a taxi market with a monopsony taxi owner and multiple rentee-drivers," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 1-22.
    10. Ke, Jintao & Chen, Xiqun (Michael) & Yang, Hai & Li, Sen, 2022. "Coordinating supply and demand in ride-sourcing markets with pre-assigned pooling service and traffic congestion externality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    11. Nourinejad, Mehdi & Ramezani, Mohsen, 2020. "Ride-Sourcing modeling and pricing in non-equilibrium two-sided markets," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 340-357.
    12. Li, Manzi & Jiang, Gege & Lo, Hong K., 2022. "Pricing strategy of ride-sourcing services under travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    13. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    14. Li, Baicheng & Szeto, W.Y. & Luo, Qin, 2021. "A peak-period taxi scheme design problem: Formulation and policy implications," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    15. Xu, Zhengtian & Yin, Yafeng & Chao, Xiuli & Zhu, Hongtu & Ye, Jieping, 2021. "A generalized fluid model of ride-hailing systems," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 587-605.
    16. Li, Yuanyuan & Liu, Yang & Xie, Jun, 2020. "A path-based equilibrium model for ridesharing matching," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 373-405.
    17. Yang, Jie & Zhao, Daozhi & Wang, Zeyu & Xu, Chunqiu, 2022. "Impact of regulation on on-demand ride-sharing service: Profit-based target vs demand-based target," Research in Transportation Economics, Elsevier, vol. 92(C).
    18. Zhang, Kenan & Nie, Yu (Marco), 2022. "Mitigating traffic congestion induced by transportation network companies: A policy analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 96-118.
    19. Li, Shukai & Luo, Qi & Hampshire, Robert Cornelius, 2021. "Optimizing large on-demand transportation systems through stochastic conic programming," European Journal of Operational Research, Elsevier, vol. 295(2), pages 427-442.
    20. Ke, Jintao & Wang, Ce & Li, Xinwei & Tian, Qiong & Huang, Hai-Jun, 2024. "Equilibrium analysis for on-demand food delivery markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:131:y:2020:i:c:p:84-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.