IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v13y2025i7p119-d1686028.html
   My bibliography  Save this article

Copula Modeling of COVID-19 Excess Mortality

Author

Listed:
  • Jonas Asplund

    (Mathematics Department, University of St. Thomas, 2115 Summit Ave, St. Paul, MN 55105, USA)

  • Arkady Shemyakin

    (Mathematics Department, University of St. Thomas, 2115 Summit Ave, St. Paul, MN 55105, USA)

Abstract

COVID-19’s effects on mortality are hard to quantify. Issues with attribution can cause problems with resulting conclusions. Analyzing excess mortality addresses this concern and allows for the analysis of broader effects of the pandemic. We propose separate ARIMA models to analyze excess mortality for several countries. For the model of joint excess mortality, we suggest vine copulas with Bayesian pair copula selection. This is a new methodology and after its discussion we offer an illustration. The present study examines weekly mortality data from 2019 to 2022 in the USA, Canada, France, Germany, Norway, and Sweden. Previously proposed ARIMA models have low lags and no residual autocorrelation. Only Norway’s residuals exhibited normality, while the remaining residuals suggest skewed Student t-distributions as a plausible fit. A vine copula model was then developed to model the association between the ARIMA residuals for different countries, with the countries farther apart geographically exhibiting weak or no association. The validity of fitted distributions and resulting vine copula was checked using 2023 data. Goodness of fit tests suggest that the fitted distributions were suitable, except for the USA, and that the vine copula used was also valid. We conclude that the time series models of COVID-19 excess mortality are viable. Overall, the suggested methodology seems suitable for creating joint forecasts of pandemic mortality for several countries or geographical regions.

Suggested Citation

  • Jonas Asplund & Arkady Shemyakin, 2025. "Copula Modeling of COVID-19 Excess Mortality," Risks, MDPI, vol. 13(7), pages 1-18, June.
  • Handle: RePEc:gam:jrisks:v:13:y:2025:i:7:p:119-:d:1686028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/13/7/119/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/13/7/119/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Discussion Paper 1996-58, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    2. Lima, Luiz Renato & Néri, Breno Pinheiro, 2007. "Comparing Value-at-Risk Methodologies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 27(1), May.
    3. J. T. A. S. Ferreira & M. F. J. Steel, 2004. "On Describing Multivariate Skewness: A Directional Approach," Econometrics 0409010, University Library of Munich, Germany.
    4. Bernardo León & Andrés Mora, 2011. "CDS: relación con índices accionarios y medida de riesgo," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 29(64), pages 178-211, July.
    5. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    6. Fernández, C. & Steel, M.F.J., 1997. "On the Dangers of Modelling through Continuous Distributions : A Bayesian Perspective," Other publications TiSEM 53bef46d-6511-4d09-9018-d, Tilburg University, School of Economics and Management.
    7. Paola Palmitesta & Corrado Provasi, 2005. "Aggregation of Dependent Risks Using the Koehler–Symanowski Copula Function," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 189-205, February.
    8. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007. "Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers," Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
    9. Manabu Asai & Michael McAleer, 2011. "Alternative Asymmetric Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 30(5), pages 548-564, October.
    10. Fabio Canova & Matteo Ciccarelli, 2009. "Estimating Multicountry Var Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 929-959, August.
    11. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    13. Oriol Roch Casellas & Antonio Alegre Escolano, 2005. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Working Papers in Economics 143, Universitat de Barcelona. Espai de Recerca en Economia.
    14. Giot, Pierre & Laurent, Sebastien, 2003. "Market risk in commodity markets: a VaR approach," Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
    15. Jeffrey Dotson & Joseph Retzer & Greg Allenby, 2008. "Non-normal simultaneous regression models for customer linkage analysis," Quantitative Marketing and Economics (QME), Springer, vol. 6(3), pages 257-277, September.
    16. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    17. Kóbor, Ádám, 2000. "A feltétel nélküli normalitás egyszerű alternatívái a kockáztatott érték számításában [The simple alternatives of unconditional normality in the calculation of value at risk]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 878-898.
    18. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    19. Abdou Kâ Diongue & Dominique Guegan, 2008. "Estimation of k-factor GIGARCH process : a Monte Carlo study," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00235179, HAL.
    20. Gael M. Martin & Catherine S. Forbes & Vance L. Martin, 2005. "Implicit Bayesian Inference Using Option Prices," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(3), pages 437-462, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:7:p:119-:d:1686028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.