IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/354.html
   My bibliography  Save this article

A feltétel nélküli normalitás egyszerű alternatívái a kockáztatott érték számításában
[The simple alternatives of unconditional normality in the calculation of value at risk]

Author

Listed:
  • Kóbor, Ádám

Abstract

A piaci kockázatmérés fontosságának a ténye, a nemzetközi szinten elterjedt módszerek meglehetősen gyorsan beépültek a hazai pénzügyi szakma gondolkodásába. Napjaink legnépszerűbb elemzési rendszerét a kockáztatott érték (Value at Risk-VaR) számításához kapcsolódó módszerek jelentik. A kereskedési könyvi szabályozás hatályba lépésével a VaR-számítás és a hozzá kapcsolódó ismeretek elterjedése még ütemesebbé válhat. Ugyancsak közismert az a tény, hogy a legtöbb pénzügyihozam-idősor nem felel meg a normalitás szigorú követelményének; a piaci hozamok eloszlásai ,,vastag szélekkel" jellemezhetők. Jelen tanulmánynak a célja, hogy áttekintsen és bemutasson az alkalmazás illusztrálásával olyan módszereket, amelyek könnyen implementálhatók, azonban a VaR-becslések hatékonyságát mégis nagyban növelhetik. Végül a tanulmány a különböző eljárásokat hatékonyságuk szerint hasonlítja össze; ehhez tőzsdeindexekre (BUX és DJIA) végzett VaR-becslések szolgálnak segítségül. Az összehasonlításokból természetesen csak úgy lehet általánosabb következtetéseket leszűrni, hogy szem előtt tarjuk a választott termékek és időszak konkrétságát és egyediségét.

Suggested Citation

  • Kóbor, Ádám, 2000. "A feltétel nélküli normalitás egyszerű alternatívái a kockáztatott érték számításában [The simple alternatives of unconditional normality in the calculation of value at risk]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 878-898.
  • Handle: RePEc:ksa:szemle:354
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=354
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Other publications TiSEM 0991c197-c9e8-4904-8119-3, Tilburg University, School of Economics and Management.
    2. Subu Venkataraman, 1997. "Value at risk for a mixture of normal distributions: the use of quasi- Bayesian estimation techniques," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 21(Mar), pages 2-13.
    3. Beckers, Stan, 1981. "A Note on Estimating the Parameters of the Diffusion-Jump Model of Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 16(1), pages 127-140, March.
    4. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    2. de Araújo, André da Silva & Garcia, Maria Teresa Medeiros, 2013. "Risk contagion in the north-western and southern European stock markets," Journal of Economics and Business, Elsevier, vol. 69(C), pages 1-34.
    3. Giot, Pierre & Laurent, Sebastien, 2003. "Market risk in commodity markets: a VaR approach," Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
    4. Stavros Degiannakis, 2004. "Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model," Applied Financial Economics, Taylor & Francis Journals, vol. 14(18), pages 1333-1342.
    5. Lima, Luiz Renato & Néri, Breno Pinheiro, 2007. "Comparing Value-at-Risk Methodologies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 27(1), May.
    6. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    7. José Carlos Ramirez Sánchez, 2004. "Usos y limitaciones de los procesos estocásticos en el tratamiento de distribuciones de rendimientos con colas gordas," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 19(1), pages 51-76, June.
    8. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    9. Sonia Benito Muela & Carmen López-Martín & Mª Ángeles Navarro, 2017. "The Role of the Skewed Distributions in the Framework of Extreme Value Theory (EVT)," International Business Research, Canadian Center of Science and Education, vol. 10(11), pages 88-102, November.
    10. Emrah ALTUN & Morad ALIZADEH & Gamze OZEL & Hüseyin TATLIDIL & Najmieh MAKSAYI, 2017. "Forecasting Value-At-Risk With Two-Step Method: Garch-Exponentiated Odd Log-Logistic Normal Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 97-115, December.
    11. Wentao Hu, 2019. "calculation worst-case Value-at-Risk prediction using empirical data under model uncertainty," Papers 1908.00982, arXiv.org.
    12. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    13. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    14. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    15. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    16. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    17. Evangelos Vasileiou, 2022. "Inaccurate Value at Risk Estimations: Bad Modeling or Inappropriate Data?," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1155-1171, March.
    18. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    19. Dimson, Elroy & Marsh, Paul, 1997. "Stress tests of capital requirements," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1515-1546, December.
    20. Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok The email address of this maintainer does not seem to be valid anymore. Please ask Odon Sok to update the entry or send us the correct address (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.